College of Engineering

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/27

The College of Engineering at Montana State University will serve the State of Montana and the nation by fostering lifelong learning, integrating learning and discovery, developing and sharing technical expertise, and empowering students to be tomorrow's leaders.

Browse

Search Results

Now showing 1 - 10 of 41
  • Thumbnail Image
    Item
    Beyond the Surface: Non-Invasive Low-Field NMR Analysis of Microbially-Induced Calcium Carbonate Precipitation in Shale Fractures
    (Springer Science and Business Media LLC, 2024-07) Willett, Matthew R.; Bedey, Kayla; Crandall, Dustin; Seymour, Joseph D.; Rutqvist, Jonny; Cunningham, Alfred B.; Phillips, Adrienne J.; Kirkland, Catherine M.
    Microbially-induced calcium carbonate precipitation (MICP) is a biological process in which microbially-produced urease enzymes convert urea and calcium into solid calcium carbonate (CaCO3) deposits. MICP has been demonstrated to reduce permeability in shale fractures under elevated pressures, raising the possibility of applying this technology to enhance shale reservoir storage safety. For this and other applications to become a reality, non-invasive tools are needed to determine how effectively MICP seals shale fractures at subsurface temperatures. In this study, two different MICP strategies were tested on 2.54 cm diameter and 5.08 cm long shale cores with a single fracture at 60 ℃. Flow-through, pulsed-flow MICP-treatment was repeatedly applied to Marcellus shale fractures with and without sand (“proppant”) until reaching approximately four orders of magnitude reduction in apparent permeability, while a single application of polymer-based “immersion” MICP-treatment was applied to an Eagle Ford shale fracture with proppant. Low-field nuclear magnetic resonance (LF-NMR) and X-Ray computed microtomography (micro-CT) techniques were used to assess the degree of biomineralization. With the flow-through approach, these tools revealed that while CaCO3 precipitation occurred throughout the fracture, there was preferential precipitation around proppant. Without proppant, the same approach led to premature sealing at the inlet side of the core. In contrast, immersion MICP-treatment sealed off the fracture edges and showed less mineral precipitation overall. This study highlights the use of LF-NMR relaxometry in characterizing fracture sealing and can help guide NMR logging tools in subsurface remediation efforts.
  • Thumbnail Image
    Item
    Beyond the Surface: Non-Invasive Low-Field NMR Analysis of Microbially-Induced Calcium Carbonate Precipitation in Shale Fractures
    (Springer Science and Business Media LLC, 2024-07) Willet, Matthew R.; Bedey, Kayla; Crandall, Dustin; Seymour, Joseph D.; Rutqvist, Jonny; Cunningham, Alfred B.; Phillips, Adrienne J.; Kirkland, Catherine M.
    Microbially-induced calcium carbonate precipitation (MICP) is a biological process in which microbially-produced urease enzymes convert urea and calcium into solid calcium carbonate (CaCO3) deposits. MICP has been demonstrated to reduce permeability in shale fractures under elevated pressures, raising the possibility of applying this technology to enhance shale reservoir storage safety. For this and other applications to become a reality, non-invasive tools are needed to determine how effectively MICP seals shale fractures at subsurface temperatures. In this study, two different MICP strategies were tested on 2.54 cm diameter and 5.08 cm long shale cores with a single fracture at 60 ℃. Flow-through, pulsed-flow MICP-treatment was repeatedly applied to Marcellus shale fractures with and without sand (“proppant”) until reaching approximately four orders of magnitude reduction in apparent permeability, while a single application of polymer-based “immersion” MICP-treatment was applied to an Eagle Ford shale fracture with proppant. Low-field nuclear magnetic resonance (LF-NMR) and X-Ray computed microtomography (micro-CT) techniques were used to assess the degree of biomineralization. With the flow-through approach, these tools revealed that while CaCO3 precipitation occurred throughout the fracture, there was preferential precipitation around proppant. Without proppant, the same approach led to premature sealing at the inlet side of the core. In contrast, immersion MICP-treatment sealed off the fracture edges and showed less mineral precipitation overall. This study highlights the use of LF-NMR relaxometry in characterizing fracture sealing and can help guide NMR logging tools in subsurface remediation efforts.
  • Thumbnail Image
    Item
    Characterizing the structure of aerobic granular sludge using ultra-high field magnetic resonance
    (IWA Publishing, 2020-08) Kirkland, Catherine M.; Krug, Julia R.; Vergeldt, Frank J.; van den Berg, Lenno; Velders, Aldrik H.; Seymour, Joseph D.; Codd, Sarah L.; Van As, Henk; de Kreuk, Merle K.
    Despite aerobic granular sludge wastewater treatment plants operating around the world, our understanding of internal granule structure and its relation to treatment efficiency remains limited. This can be attributed in part to the drawbacks of time-consuming, labor-intensive, and invasive microscopy protocols which effectively restrict samples sizes and may introduce artefacts. Timedomain nuclear magnetic resonance (NMR) allows non-invasive measurements which describe internal structural features of opaque, complex materials like biofilms. NMR was used to image aerobic granules collected from five full-scale wastewater treatment plants in the Netherlands and United States, as well as laboratory granules and control beads. T1 and T2 relaxation-weighted images reveal heterogeneous structures that include high- and low-density biofilm regions, waterlike voids, and solid-like inclusions. Channels larger than approximately 50 μm and connected to the bulk fluid were not visible. Both cluster and ring-like structures were observed with each granule source having a characteristic structural type. These structures, and their NMR relaxation behavior, were stable over several months of storage. These observations reveal the complex structures within aerobic granules from a range of sources and highlight the need for non-invasive characterization methods like NMR to be applied in the ongoing effort to correlate structure and function.
  • Thumbnail Image
    Item
    Heterogeneous diffusion in aerobic granular sludge
    (Wiley, 2020-08) van den Berg, Lenno; Kirkland, Catherine M.; Seymour, Joseph D.; Codd, Sarah L.; Van Loosdrecht, Mark C. M.; de Kreuk, Merle K.
    Aerobic granular sludge (AGS) technology allows simultaneous nitrogen, phosphorus, and carbon removal in compact wastewater treatment processes. To operate, design, and model AGS reactors, it is essential to properly understand the diffusive transport within the granules. In this study, diffusive mass transfer within full‐scale and lab‐scale AGS was characterized with nuclear magnetic resonance (NMR) methods. Self‐diffusion coefficients of water inside the granules were determined with pulsed‐field gradient NMR, while the granule structure was visualized with NMR imaging. A reaction‐diffusion granule‐scale model was set up to evaluate the impact of heterogeneous diffusion on granule performance. The self‐diffusion coefficient of water in AGS was ∼70% of the self‐diffusion coefficient of free water. There was no significant difference between self‐diffusion in AGS from full‐scale treatment plants and from lab‐scale reactors. The results of the model showed that diffusional heterogeneity did not lead to a major change of flux into the granule (<1%). This study shows that differences between granular sludges and heterogeneity within granules have little impact on the kinetic properties of AGS. Thus, a relatively simple approach is sufficient to describe mass transport by diffusion into the granules.
  • Thumbnail Image
    Item
    Impact of Xylose on Dynamics of Water Diffusion in Mesoporous Zeolites Measured by NMR
    (2021-09) Nelson, Madison L.; Romo, Joelle E.; Wettstein, Stephanie G.; Seymour, Joseph D.
    Zeolites are known to be effective catalysts in biomass converting processes. Understanding the mesoporous structure and dynamics within it during such reactions is important in effectively utilizing them. Nuclear magnetic resonance (NMR) T2 relaxation and diffusion measurements, using a high-power radio frequency probe, are shown to characterize the dynamics of water in mesoporous commercially made 5A zeolite beads before and after the introduction of xylose. Xylose is the starting point in the dehydration into furfural. The results indicate xylose slightly enhances rotational mobility while it decreases translational motion through altering the permeability, K, throughout the porous structure. The measurements show xylose inhibits pure water from relocating into larger pores within the zeolite beads where it eventually is expelled from the bead itself.
  • Thumbnail Image
    Item
    Characterization of velocity fluctuations and the transition from transient to steady state shear banding with and without pre-shear in a wormlike micelle solution under shear startup by Rheo-NMR
    (2020-04) Al-kaby, Rehab N.; Codd, Sarah L.; Seymour, Joseph D.; Brown, Jennifer R.
    Rheo-NMR velocimetry was used to study shear banding of a 6 wt.% cetylpyridinium chloride (CPCl) worm-like micelle solution under shear startup conditions with and without pre-shear. 1D velocity profiles across the fluid gap of a concentric cylinder Couette shear cell were measured every 1 s following shear startup for four different applied shear rates within the stress plateau. Fitting of the velocity profiles allowed calculation of the shear banding characteristics (shear rates in the high and low shear band, the interface position and apparent slip at the inner rotating wall) as the flow transitioned from transient to steady state regimes. Characteristic timescales to reach steady state were obtained and found to be similar for all shear banding characteristics. Timescales decreased with increasing applied shear rate. Large temporal fluctuations with time were also observed and Fourier transform of the time and velocity autocorrelation functions quantified the fluctuation frequencies. Frequencies corresponded to the elastically driven hydrodynamic instabilities, i.e. vortices, that are known to occur in the unstable high shear band and were dependent upon both applied shear rate and the pre-shear protocol.
  • Thumbnail Image
    Item
    Characterization and quantification of structure and flow in multichannel polymer membranes by MRI
    (2019-01) Schuhmann, S.; Simkins, Jeffrey W.; Schork, N.; Codd, Sarah L.; Seymour, Joseph D.; Heijnen, M.; Saravia, F.; Horn, H.; Nirschl, H.; Guthausen, G.
    Polymeric multichannel hollow fiber membranes were developed to reduce fiber breakage and to increase the volume-to-membrane-surface ratio and consequently the efficiency of filtration processes. These membranes are commonly used in ultrafiltration and are operated in in-out dead-end mode. However, some of the filtration details are unknown. The filtration efficiency and flow in the multichannel membranes depend on filtration time and are expected to vary along spatial coordinates. In the current work, in-situ magnetic resonance imaging was used to answer these questions. Velocities were quantified in the feed channels to obtain a detailed understanding of the filtration process. Flow and deposits were measured in each of the seven channels during filtration of sodium alginate, which is a model substance for extracellular polymeric substances occurring in water treatment. Volume flow and flow profiles were calculated from phase contrast flow images. The flow in z-direction in the center channel was higher than in the surrounding channels. Flow profiles variate depending on the concentration of Ca2+, which changes the filtration mechanism of aqueous solutions of sodium alginate from concentration polarization to gel layer filtration.
  • Thumbnail Image
    Item
    Glass Dynamics and Domain Size in a Solvent-Polymer Weak Gel Measured by Multidimensional Magnetic Resonance Relaxometry and Diffusometry
    (2019-02) Williamson, Nathan H.; Dower, April M.; Codd, Sarah L.; Broadbent, Amber L.; Gross, Dieter; Seymour, Joseph D.
    Nuclear magnetic resonance measurements of rotational and translational molecular dynamics are applied to characterize the nanoscale dynamic heterogeneity of a physically cross-linked solvent-polymer system above and below the glass transition temperature. Measured rotational dynamics identify domains associated with regions of solidlike and liquidlike dynamics. Translational dynamics provide quantitative length and timescales of nanoscale heterogeneity due to polymer network cross-link density. Mean squared displacement measurements of the solvent provide microrheological characterization of the system and indicate glasslike caging dynamics both above and below the glass transition temperature.
  • Thumbnail Image
    Item
    Spatiotemporal mapping of oxygen in a microbially-impacted packed bed using 19F Nuclear magnetic resonance oximetry
    (2018-08) Simkins, Jeffrey W.; Stewart, Philip S.; Seymour, Joseph D.
    19F magnetic resonance has been used in the medical field for quantifying oxygenation in blood, tissues, and tumors. The 19F NMR oximetry technique exploits the affinity of molecular oxygen for liquid fluorocarbon phases, and the resulting linear dependence of 19F spin–lattice relaxation rate R1 on local oxygen concentration. Bacterial biofilms, aggregates of bacteria encased in a self-secreted matrix of extracellular polymers, are important in environmental, industrial, and clinical settings and oxygen gradients represent a critical determinant of biofilm function. However, measurement of oxygen distribution in biofilms and biofouled porous media is difficult. Here the ability of 19F NMR oximetry to accurately track oxygen profile development in microbial impacted packed bed systems without impacting oxygen transport is demonstrated. Time-stable and inert fluorocarbon containing particles are designed which act as oxygen reporters in porous media systems. Particles are generated by emulsifying and entrapping perfluorooctylbromide (PFOB) into alginate gel, resulting in oxygen-sensing alginate beads that are then used as the solid matrix of the packed bed. 19F oxygenation maps, when combined with 1H velocity maps, allow for insight into the interplay between fluid dynamics and oxygen transport phenomena in these complex biofouled systems. Spatial maps of oxygen consumption rate constants are calculated. The growth characteristics of two bacteria, a non-biofilm forming Escherichia coli and Staphylococcus epidermidis, a strong biofilm-former, are used to demonstrate the novel data provided by the method.
  • Thumbnail Image
    Item
    NMR Relaxometry to Characterize the Drug Structural Phase in a Porous Construct
    (2018-06) Thrane, Linn W.; Berglund, Emily A.; Wilking, James N.; Vodak, David; Seymour, Joseph D.
    Nuclear magnetic resonance (NMR) frequency spectra and T2 relaxation time measurements, using a high-power radio frequency probe, are shown to characterize the presence of an amorphous drug in a porous silica construct. The results indicate the ability of non-solid-state NMR methods to characterize crystalline and amorphous solid structural phases in drugs. Two-dimensional T1–T2 magnetic relaxation time correlation experiments are shown to monitor the impact of relative humidity on the drug in a porous silica tablet.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.