College of Engineering
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/27
The College of Engineering at Montana State University will serve the State of Montana and the nation by fostering lifelong learning, integrating learning and discovery, developing and sharing technical expertise, and empowering students to be tomorrow's leaders.
Browse
2 results
Search Results
Item Computing a consensus trajectory in a vehicular network(Springer Science and Business Media LLC, 2022-09) Zou, Peng; Qingge, Letu; Yang, Qing; Zhu, BinhaiIn this paper, we study the problem of computing a consensus trajectory of a vehicle given the history of Points of Interest visited by the vehicle over a certain period of time. The problem arises when a system tries to establish the social connection between two vehicles in a vehicular network, where three versions of the problem are studied. Formally, given a set of m trajectories, the first version of the problem is to compute a target (median) sequence T over Σ such that the sum of similarity measure (i.e., number of adjacencies) between T and all Si’s is maximized. For this version, we show that the problem is NP-hard and we present a simple factor-2 approximation based on a greedy method. We implement the greedy algorithm and a variation of it which is based on a more natural greedy search on a new data structure called adjacency map. In the second version of the problem where the sequence T is restricted to be a permutation, we show that the problem remains NP-hard but the approximation factor can be improved to 1.5. In the third version where the sequence T has to contain all letters of Σ, we again prove that it is NP-hard. We implement a simple greedy algorithm and a variation of the 1.5-approximation algorithm for the second version, and which are used to construct solution for the third version. Our algorithms are tested on the simulation data and the empirical results are very promising.Item Dispersing and grouping points on planar segments(Elsevier BV, 2022-09) He, Xiaozhou; Lai, Wenfeng; Zhu, Binhai; Zou, PengMotivated by (continuous) facility location, we study the problem of dispersing and grouping points on a set of segments (of streets) in the plane. In the former problem, given a set of n disjoint line segments in the plane, we investigate the problem of computing a point on each of the n segments such that the minimum Euclidean distance between any two of these points is maximized. We prove that this 2D dispersion problem is NP-hard, in fact, it is NP-hard even if all the segments are parallel and are of unit length. This is in contrast to the polynomial solvability of the corresponding 1D problem by Li and Wang (2016), where the intervals are in 1D and are all disjoint. With this result, we also show that the Independent Set problem on Colored Linear Unit Disk Graph (meaning the convex hulls of points with the same color form disjoint line segments) remains NP-hard, and the parameterized version of it is in W[2]. In the latter problem, given a set of n disjoint line segments in the plane we study the problem of computing a point on each of the n segments such that the maximum Euclidean distance between any two of these points is minimized. We present a factor-1.1547 approximation algorithm which runs in time. Our results can be generalized to the Manhattan distance.