College of Engineering

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/27

The College of Engineering at Montana State University will serve the State of Montana and the nation by fostering lifelong learning, integrating learning and discovery, developing and sharing technical expertise, and empowering students to be tomorrow's leaders.

Browse

Search Results

Now showing 1 - 10 of 182
  • Thumbnail Image
    Item
    Antimicrobial activity of naturally occurring phenols and derivatives against biofilm and planktonic bacteria
    (2019-10) Walsh, Danica J.; Livinghouse, Tom; Goeres, Darla M.; Mettler, Madelyn; Stewart, Philip S.
    Biofilm-forming bacteria present formidable challenges across diverse settings, and there is a need for new antimicrobial agents that are both environmentally acceptable and relatively potent against microorganisms in the biofilm state. The antimicrobial activity of three naturally occurring, low molecular weight, phenols, and their derivatives were evaluated against planktonic and biofilm Staphylococcus epidermidis and Pseudomonas aeruginosa. The structure activity relationships of eugenol, thymol, carvacrol, and their corresponding 2- and 4-allyl, 2-methallyl, and 2- and 4-n-propyl derivatives were evaluated. Allyl derivatives showed a consistent increased potency with both killing and inhibiting planktonic cells but they exhibited a decrease in potency against biofilms. This result underscores the importance of using biofilm assays to develop structure-activity relationships when the end target is biofilm.
  • Thumbnail Image
    Item
    Characterization of synovial fluid metabolomic phenotypes of cartilage morphological changes associated with osteoarthritis
    (2019-08) Carlson, Alyssa K.; Rawle, Rachel A.; Wallace, Cameron W.; Brooks, Ellen G.; Adams, Erik; Greenwood, Mark C.; Olmer, Merissa; Lotz, Martin K.; Bothner, Brian; June, Ronald K.
    "Objective Osteoarthritis (OA) is a multifactorial disease with etiological heterogeneity. The objective of this study was to classify OA subgroups by generating metabolomic phenotypes from human synovial fluid. Design: Post mortem synovial fluids (n = 75) were analyzed by high performance-liquid chromatography mass spectrometry (LC-MS) to measure changes in the global metabolome. Comparisons of healthy (grade 0), early OA (grades I-II), and late OA (grades III-IV) donor populations were considered to reveal phenotypes throughout disease progression. Results: Global metabolomic profiles in synovial fluid were distinct between healthy, early OA, and late OA donors. Pathways differentially activated among these groups included structural deterioration, glycerophospholipid metabolism, inflammation, central energy metabolism, oxidative stress, and vitamin metabolism. Within disease states (early and late OA), subgroups of donors revealed distinct phenotypes. Synovial fluid metabolomic phenotypes exhibited increased inflammation (early and late OA), oxidative stress (late OA), or structural deterioration (early and late OA) in the synovial fluid. Conclusion: These results revealed distinct metabolic phenotypes in human synovial fluid, provide insight into pathogenesis, represent novel biomarkers, and can move toward developing personalized interventions for subgroups of OA patients.
  • Thumbnail Image
    Item
    Dynamic processing of DOM: Insight from exometabolomics, fluorescence spectroscopy, and mass spectrometry
    (2018-06) Smith, Heidi J.; Tigges, Michelle M.; D'Andrilli, Juliana; Parker, Albert E.; Bothner, Brian; Foreman, Christine M.
    Dissolved organic matter (DOM) in freshwater environments is an important source of organic carbon, supporting bacterial respiration. Frozen environments cover vast expanses of our planet, with glaciers and ice-sheets storing upwards of 6 petagrams of organic carbon. It is generally believed that DOM liberated from ice stimulates downstream environments. If true, glacial DOM is an important component of global carbon cycling. However, coupling the release of DOM to microbial activity is challenging due to the molecular complexity of DOM and the metabolic connectivity within microbial communities. Using a single environmentally relevant organism, we demonstrate that processing of compositionally diverse DOM occurs, but, even though glacially derived DOM is chemically labile, it is unable to support sustained respiration. In view of projected changes in glacier DOM export, these findings imply that biogeochemical impacts on downstream environments will depend on the reactivity and heterogeneity of liberated DOM, as well as the timescale.
  • Thumbnail Image
    Item
    Using hyperspectral plant signatures for CO2 leak detection during the 2008 ZERT CO2 sequestration field experiment in Bozeman, MT
    (2010-03) Male, Erin J.; Pickles, William L.; Silver, Eli A.; Hoffmann, Gary D.; Lewicki, Jennifer; Apple, Martha E.; Repasky, Kevin S.; Burton, Elizabeth A.
    Hyperspectral plant signatures can be used as a short-term, as well as long-term (100-year timescale) monitoring technique to verify that CO2 sequestration fields have not been compromised. An influx of CO2 gas into the soil can stress vegetation, which causes changes in the visible to near-infrared reflectance spectral signature of the vegetation. For 29 days, beginning on July 9, 2008, pure carbon dioxide gas was released through a 100-m long horizontal injection well, at a flow rate of 300 kg day−1. Spectral signatures were recorded almost daily from an unmown patch of plants over the injection with a “FieldSpec Pro” spectrometer by Analytical Spectral Devices, Inc. Measurements were taken both inside and outside of the CO2 leak zone to normalize observations for other environmental factors affecting the plants. Four to five days after the injection began, stress was observed in the spectral signatures of plants within 1 m of the well. After approximately 10 days, moderate to high amounts of stress were measured out to 2.5 m from the well. This spatial distribution corresponded to areas of high CO2 flux from the injection. Airborne hyperspectral imagery, acquired by Resonon, Inc. of Bozeman, MT using their hyperspectral camera, also showed the same pattern of plant stress. Spectral signatures of the plants were also compared to the CO2 concentrations in the soil, which indicated that the lower limit of soil CO2 needed to stress vegetation is between 4 and 8% by volume.
  • Thumbnail Image
    Item
    Light-Based 3D Printing of Hydrogels with High-Resolution Channels
    (2019-01) Benjamin, Aaron D.; Abbasi, Reha; Owens, Madison; Olsen, Robert J.; Walsh, Danica J.; LeFevre, Thomas B.; Wilking, James N.
    Hydrogels are soft, water-based gels with widespread applications in personal care products, medicine and biomedical engineering. Many applications require structuring the hydrogel into complex three-dimensional (3D) shapes. For these applications, light-based 3D printing methods offer exquisite control over material structure. However, the use of these methods for structuring hydrogels is underdeveloped. In particular, the ability to print hydrogel objects containing internal voids and channels is limited by the lack of well-characterized formulations that strongly attenuate light and the lack of a theoretical framework for predicting and mitigating channel occlusion. Here we present a combined experimental and theoretical approach for creating well-defined channels with any orientation in hydrogels using light-based 3D printing. This is achieved by the incorporation of photoblocker and the optimization of print conditions to ensure layer-layer adhesion while minimizing channel occlusion. To demonstrate the value of this approach we print hydrogels containing individual spiral channels with centimeter-scale length and submillimeter-scale cross-section. While the channels presented here are relatively simple, this same approach could be used to achieve more complex channel designs mimicking, for example, the complex vasculature of living organisms. The low cytotoxicity of the gel makes the formulation a promising candidate for biological applications.
  • Thumbnail Image
    Item
    Phosphate starvation response controls genes required to synthesize the phosphate analog arsenate
    (2018-05) Wang, Qian; Kang, Yoon-Suk; Alowaifeer, Abdullah; Shi, Kaixiang; Fan, Xia; Wang, Lu; Jetter, Jonathan; Bothner, Brian; Wang, Gejiao; McDermott, Timothy R.
    Environmental arsenic poisoning affects roughly 200 million people worldwide. The toxicity and mobility of arsenic in the environment is significantly influenced by microbial redox reactions, with arsenite (AsIII ) being more toxic than arsenate (AsV ). Microbial oxidation of AsIII to AsV is known to be regulated by the AioXSR signal transduction system and viewed to function for detoxification or energy generation. Here, we show that AsIII oxidation is ultimately regulated by the phosphate starvation response (PSR), requiring the sensor kinase PhoR for expression of the AsIII oxidase structural genes aioBA. The PhoRB and AioSR signal transduction systems are capable of transphosphorylation cross-talk, closely integrating AsIII oxidation with the PSR. Further, under PSR conditions, AsV significantly extends bacterial growth and accumulates in the lipid fraction to the apparent exclusion of phosphorus. This could spare phosphorus for nucleic acid synthesis or triphosphate metabolism wherein unstable arsenic esters are not tolerated, thereby enhancing cell survival potential. We conclude that AsIII oxidation is logically part of the bacterial PSR, enabling the synthesis of the phosphate analog AsV to replace phosphorus in specific biomolecules or to synthesize other molecules capable of a similar function, although not for total replacement of cellular phosphate.
  • Thumbnail Image
    Item
    A large-scale multiomics analysis of wheat stem solidness and the wheat stem sawfly feeding response, and syntenic associations in barley, Brachypodium, and rice
    (2018-02) Biyiklioglu, Sezgi; Alptekin, Burcu; Akpinar, B. Ani; Varella, Andrea C.; Hofland, Megan L.; Weaver, David K.; Bothner, Brian; Budak, Hikmet
    The wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae), is an important pest of wheat and other cereals, threatening the quality and quantity of grain production. WSS larvae feed and develop inside the stem where they are protected from the external environment; therefore, pest management strategies primarily rely on host plant resistance. A major locus on the long arm of wheat chromosome 3B underlies most of the variation in stem solidness; however, the impact of stem solidness on WSS feeding has not been completely characterized. Here, we used a multiomics approach to examine the response to WSS in both solid- and semi-solid-stemmed wheat varieties. The combined transcriptomic, proteomic, and metabolomic data revealed that two important molecular pathways, phenylpropanoid and phosphate pentose, are involved in plant defense against WSS. We also detected a general downregulation of several key defense transcripts, including those encoding secondary metabolites such as DIMBOA, tricetin, and lignin, which suggested that the WSS larva might interfere with plant defense. We comparatively analyzed the stem solidness genomic region known to be associated with WSS tolerance in wild emmer, durum, and bread wheats, and described syntenic regions in the close relatives barley, Brachypodium, and rice. Additionally, microRNAs identified from the same genomic region revealed potential regulatory pathways associated with the WSS response. We propose a model outlining the molecular responses of the WSS-wheat interactions. These findings provide insight into the link between stem solidness and WSS feeding at the molecular level.
  • Thumbnail Image
    Item
    Direct measurement of chlorine penetration into biofilms during disinfection
    (1994-12) de Beer, Dirk; Srinivasan, Rohini; Stewart, Philip S.
  • Thumbnail Image
    Item
    Maximum utilization of water resources within a planned community
    (1975) Characklis, William G.; Gaudet, F. J.
  • Thumbnail Image
    Item
    Arginine or nitrate enhances antibiotic susceptibility of Pseudomonas aeruginosa in biofilms
    (2006-01) Borriello, Giorgia B.; Richards, Lee A.; Ehrlich, Garth D.; Stewart, Philip S.
    Arginine enhanced the killing of Pseudomonas aeruginosa by ciprofloxacin and tobramycin under anaerobic, but not aerobic, growth conditions. Arginine or nitrate also enhanced the killing by these antibiotics in mature biofilms, reducing viable cell counts by a factor of 10 to 100 beyond that achieved by antibiotics alone.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.