College of Engineering
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/27
The College of Engineering at Montana State University will serve the State of Montana and the nation by fostering lifelong learning, integrating learning and discovery, developing and sharing technical expertise, and empowering students to be tomorrow's leaders.
Browse
1780 results
Search Results
Item Geometric phase predicts locomotion performance in undulating living systems across scales(Proceedings of the National Academy of Sciences, 2024-06) Rieser, Jennifer M.; Chong, Baxi; Gong, Chaohui; Astley, Henry C.; Schiebel, Perrin; Diaz, Kelimar; Pierce, Christopher J.; Lu, Hang; Hatton, Ross L.; Choset, Howie; Goldman, Daniel I.Self-propelling organisms locomote via generation of patterns of self-deformation. Despite the diversity of body plans, internal actuation schemes and environments in limbless vertebrates and invertebrates, such organisms often use similar traveling waves of axial body bending for movement. Delineating how self-deformation parameters lead to locomotor performance (e.g. speed, energy, turning capabilities) remains challenging. We show that a geometric framework, replacing laborious calculation with a diagrammatic scheme, is well-suited to discovery and comparison of effective patterns of wave dynamics in diverse living systems. We focus on a regime of undulatory locomotion, that of highly damped environments, which is applicable not only to small organisms in viscous fluids, but also larger animals in frictional fluids (sand) and on frictional ground. We find that the traveling wave dynamics used by mm-scale nematode worms and cm-scale desert dwelling snakes and lizards can be described by time series of weights associated with two principal modes. The approximately circular closed path trajectories of mode weights in a self-deformation space enclose near-maximal surface integral (geometric phase) for organisms spanning two decades in body length. We hypothesize that such trajectories are targets of control (which we refer to as “serpenoid templates”). Further, the geometric approach reveals how seemingly complex behaviors such as turning in worms and sidewinding snakes can be described as modulations of templates. Thus, the use of differential geometry in the locomotion of living systems generates a common description of locomotion across taxa and provides hypotheses for neuromechanical control schemes at lower levels of organization.Item Unraveling sex-specific risks of knee osteoarthritis before menopause: Do sex differences start early in life?(Elsevier BV, 2024-05) Hernández, Paula; Bradford, John; Brahmachary, Priyanka; Ulman, Sophia; Robinson, Jennifer L.; June, Ronald K.; Cucchiarini, MagaliObjective. Sufficient evidence within the past two decades have shown that osteoarthritis (OA) has a sex-specific component. However, efforts to reveal the biological causes of this disparity have emerged more gradually. In this narrative review, we discuss anatomical differences within the knee, incidence of injuries in youth sports, and metabolic factors that present early in life (childhood and early adulthood) that can contribute to a higher risk of OA in females. Design. We compiled clinical data from multiple tissues within the knee joint—since OA is a whole joint disorder—aiming to reveal relevant factors behind the sex differences from different perspectives. Results. The data gathered in this review indicate that sex differences in articular cartilage, meniscus, and anterior cruciate ligament are detected as early as childhood and are not only explained by sex hormones. Aiming to unveil the biological causes of the uneven sex-specific risks for knee OA, we review the current knowledge of sex differences mostly in young, but also including old populations, from the perspective of (i) human anatomy in both healthy and pathological conditions, (ii) physical activity and response to injury, and (iii) metabolic signatures. Conclusions. We propose that to close the gap in health disparities, and specifically regarding OA, we should address sex-specific anatomic, biologic, and metabolic factors at early stages in life, as a way to prevent the higher severity and incidence of OA in women later in life.Item A Case Study Comparison of Undergraduate Education and Engineering Majors’ Understanding of Community Engineering(Informa UK Limited, 2024-06) Vo, Tina; Hammack, Rebekah; Gannon, Paul; Lux, Nicholas; Wiehe, Blake; Moonga, Miracle; LaMeres, BrockAs we prepare teachers to provide students with opportunities within STEM education, authentic experiences should guide the instruction. Unfortunately, due to the novel integration of engineering into national reform documents, there is a dearth of documentation on elementary preservice teachers’ engineering ideas as they align with student goals (e.g. enrolling in an engineering program). As teachers must provide authentic science experiences to help frame the work of scientists for students, creating authentic engineering experiences should frame the work of engineers. Thus, it is important to foundationally investigate how elementary preservice teachers’ ideas about engineering reflect those of novice engineers. This research uses multiple case study to investigate and compare teaching and engineering majors’ understanding of engineering within their communities. Additionally, while there were some similarities across groups, engineering majors were more likely to speak to the science behind the artifacts represented in the photo novellas they authored, and the preservice teachers found a larger variety and diversity of engineering elements. Findings indicate that these groups have fundamentally different perspectives on engineering and how it is manifested within the communities. This has implications for upper tiers of education as elementary teachers lay broad engineering foundations, while middle, high school, and community colleges must methodically highlight engineering disciplines to provide more authentic experiences, highlighting the connections between engineering, science, and math.Item Simple near-monostatic Mueller polarimeter(Optica Publishing Group, 2024-09) Field, Nathaniel J.; Shaw, Joseph A.Inferring material properties from active or passive polarimetric remote sensing requires knowledge of the polarized bidirectional reflectance distribution function (P-BRDF). To encourage and simplify the process of measuring the P-BRDF of materials in the monostatic or near-monostatic configurations seen in lidar and other active remote sensing systems, we describe the design, build, and operating procedure for a simple near-monostatic polarimeter. The described system operates at 1064 nm and with a transmitter-receiver separation of about 4◦, but the design principles, alignment procedure, and measurement procedure can be directly applied to systems at other wavelengths or separation angles. Also included are the control and data analysis software for the instrument we deployed, and a small selection of retrievals from the instrument.Item Permutation-constrained Common String Partitions with Applications(Springer Science and Business Media LLC, 2024-09) Lafond, Manuel; Zhu, BinhaiWe study a new combinatorial problem based on the famous Minimum Common String Partition (MCSP) problem, which we call Permutation-constrained Common String Partition (PCSP for short). In PCSP, we are given two sequences/genomes s and t with the same length and a permutation π on [`], the question is to decide whether it is possible to decompose s and t into ` blocks that can be matched according to some specified requirements, and that conform with the permutation π. Our main result is that PCSP is FPT in parameter ` + d, where d is the maximum number of occurrences that any symbol may have in s or t. We also study a variant where the input specifies whether each matched pair of block needs to be preserved as is, or reversed. With this result on PCSP, we show that a series of genome rearrangement problems are FPT k + d, where k is the rearrangement distance between two genomes of interest.Item Hybrid Radial-Axial Flow for Enhanced Thermal Performance in Packed Bed Energy Storage(Wiley, 2024-10) Al-Azawii, Mohammad M. S.; Anderson, RyanIn this work, a hybrid radial-axial (HRA) system is used to store thermal energy in a packed bed. The heat transfer fluid (HTF) is delivered via a perforated radial pipe placed at the center of the packed bed along the axial length. Hot fluid flows from the center toward the wall through the holes (like other radial systems), but then leaves via the traditional axial flow exit, creating the HRA flow configuration. A computational fluid dynamics (CFD) model is used to analyze the thermal performance of the packed bed during the charging process utilizing the new HRA system. Alumina beads of 6 mm were filler materials and air was HTF with inlet temperature of 75°C for proof of concept. The present paper focuses on two aims: (1) utilizing CFD models to analyze flow and temperature profiles in the packed bed; (2) comparing the model results to experimental results published in a previous HRA flow study and to traditional axial flow. Two HRA configurations were considered based on previous experimental designs, one with uniform holes in the central pipe (R1) and one with gradients in the hole sizes to promote even flow from the central pipe into the bed (R2). The numerical results agree with the experimental results in both cases. The HRA system performance depends on the flow profile created by the hole designs, and it can perform better than the axial flow depending on the design of the radial pipe. Design R2, which promotes even flow from the central pipe into the bed, has higher charging efficiency than standard axial flow methods. For HRA design R2 at 0.0048 m3/s (7 SCFM, standard cubic feet per minute), numerical results for charging efficiency were 75.5% versus 73.8% for traditional axial flow. For HRA design R2 at 0.0061 m3/s (9 SCFM), numerical charging efficiency was 80.5% versus 78.1% for traditional axial flow. These results are consistent with experimental data.Item A Review on Recent Progress of Biodegradable Magnetic Microrobots for Targeted Therapeutic Delivery: Materials, Structure Designs, and Fabrication Methods(ASME International, 2024-08) Cao, Yang; Nunez Michel, Karen; Alimardani, Farzam; Wang, YiTargeted therapeutic delivery employs various technologies to enable precise delivery of therapeutic agents (drugs or cells) to specific areas within the human body. Compared with traditional drug administration routes, targeted therapeutic delivery has higher efficacy and reduced medication dosage and side effects. Soft microscale robotics have demonstrated great potential to precisely deliver drugs to the targeted region for performing designated therapeutic tasks. Microrobots can be actuated by various stimuli, such as heat, light, chemicals, acoustic waves, electric fields, and magnetic fields. Magnetic manipulation is well-suited for biomedical applications, as magnetic fields can safely permeate through organisms in a wide range of frequencies and amplitudes. Therefore, magnetic actuation is one of the most investigated and promising approaches for driving microrobots for targeted therapeutic delivery applications. To realize safe and minimally invasive therapies, biocompatibility and biodegradability are essential for these microrobots, which eliminate any post-treatment endoscopic or surgical removals. In this review, recent research efforts in the area of biodegradable magnetic microrobots used for targeted therapeutic delivery are summarized in terms of their materials, structure designs, and fabrication methods. In the end, remaining challenges and future prospects are discussed.Item MetaCDP: Metamorphic Testing for Quality Assurance of Containerized Data Pipelines(IEEE, 2024-06) ur Rehman, Faqeer; Umbreen, Sidrah; Rehman, MudasserIn the ever-evolving world of technology, companies are investing heavily in building and deploying state-of-the-art Machine Learning (ML) based systems. However, such systems heavily rely on the availability of high-quality data, which is often prepared/generated by the Extract Transform Load (ETL) data pipelines; thus, they are critical components of an end-to-end ML system. A low-performing model (trained on buggy data) running in a production environment can cause both financial and reputational losses for the organization. Therefore, it is of paramount significance to perform the quality assurance of underlying data pipelines from multiple perspectives. However, the computational complexity, continuous change in data, and the integration of multiple components make it challenging to test them effectively, ultimately causing such solutions to suffer from the Oracle problem. In this research paper, we propose MetaCDP, a Metamorphic Testing approach that can be used by both researchers and practitioners for quality assurance of modern Containerized Data Pipelines. We propose 10 Metamorphic Relations (MRs) that target the robustness and correctness of the data pipeline under test, which plays a crucial role in providing high-quality data for developing a clustering-based anomaly detection model. To show the applicability of the proposed approach, we tested a data pipeline (from the E-commerce domain) and uncovered several erroneous behaviors. We also present the nature of issues identified by the proposed MRs, which can better help/guide software engineers and researchers to use best coding practices for maintaining and improving the quality of their data pipelines.Item Effect of Fines Content on Calcium Carbonate Precipitation and Thermal Properties of Biocemented Sand(American Society of Civil Engineers, 2024-04) Gunyol, Pinar; Khosravi, Mohammad; Phillips, A. J.; Plymesser, Kathryn; Parker, Albert E.In this study, the impacts to soil thermal properties during and after biocementation via microbially induced calcite precipitation (MICP) method on silty silica sand specimens with varying fines content (0%, 5%, and 15%) were investigated. Firstly, calcium conversion was measured after each pulse; then, the MICP-treated specimens were tested for cementation uniformity. The evolution of thermal conductivity of silty soils with the MICP treatment was assessed using a thermocouple probe. The results show that thermal conductivity of silty saturated sands increased by 17% for specimens treated to 9.7% CaCO3. The improvement in thermal conductivity was attributed to the formation of calcium carbonate bridges binding the soil grains together. The results suggested that the thermal conductivity of silty soil depends on water content, the number of treatment pulses, and the treatment uniformity through the soil specimen. Presence of fines content in the soil was found to play an important role in the distribution and uniformity of biocementation through the soil specimen. However, no statistically significant difference in the thermal conductivity values of MICP-treated specimens with different fines content was observed (𝑝>0.05). The average calcium carbonate content ranged between 10.7% and 7.2% for the soils with 0% and 15% fines content, respectively. The findings of this research could be used to improve the efficiency of geothermal boreholes and other energy geostructures using MICP by improving thermal conductivity of dry and partially saturated soil.Item Selenate bioreduction in a large in situ field trial(Elsevier BV, 2024-04) Hendry, M. Jim; Kirk, Lisa; Warner, Jeff; Shaw, Shannon; Peyton, Brent M.; Schmeling, Erin; Barbour, S. LeeRemoving selenium (Se) from mine effluent is a common challenge. A long-term, in situ experiment was conducted to bioremediate large volumes (up to 7500 mc d−1) of Se(VI)-contaminated water (mean 87 μg L−1) by injecting the water into a saturated waste rock fill (SRF) at a coal mining operation in Elk Valley, British Columbia, Canada. To stimulate/maintain biofilm growth in the SRF, labile organic carbon (methanol) and nutrients were added to the water prior to its injection. A conservative tracer (Br−) was also added to track the migration of injected water across the SRF, identify wells with minimal dilution and used to quantify the extent of bioreduction. The evolution of the Se species through the SRF was monitored in time and space for 201 d. Selenium concentrations of <3.8 μg L−1 were attained in monitoring wells located 38 m from the injection wells after 114 to 141 d of operation. Concentrations of Se species in water samples from complementary long-term (351–498 d) column experiments using influent Se(VI) concentrations of 1.0 mg L−1 were consistent with the results of the in situ experiment. Solid samples collected at the completion of the column experiments confirmed the presence of indigenous Se-reducing bacteria and that the sequestered Se was present as insoluble Se(0), likely in Se-S ring compounds. Based on the success of this ongoing bioremediation experiment, this technology is being applied at other mine sites.