College of Engineering
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/27
The College of Engineering at Montana State University will serve the State of Montana and the nation by fostering lifelong learning, integrating learning and discovery, developing and sharing technical expertise, and empowering students to be tomorrow's leaders.
Browse
5 results
Search Results
Item Radiometry and the Friis transmission equation(American Association of Physics Teachers, 2013) Shaw, JosephTo more effectively tailor courses involving antennas, wireless communications, optics, and applied electromagnetics to a mixed audience of engineering and physics students, the Friis transmission equation—which quantifies the power received in a free-space communication link—is developed from principles of optical radiometry and scalar diffraction. This approach places more emphasis on the physics and conceptual understanding of the Friis equation than is provided by the traditional derivation based on antenna impedance. Specifically, it shows that the wavelength-squared dependence can be attributed to diffraction at the antenna aperture and illustrates the important difference between the throughput (product of area and solid angle) of a single antenna or telescope and the throughput of a transmitter-receiver pair.Item Model-Based Closed-Loop Control of the Hydraulic Fracturing Process(2015-02) Gu, Qiuying; Hoo, Karlene A.Hydraulic fracturing is a technique for enhancing the extraction of oil and gas from deep underground sources. Two important goals during this process are to achieve a final fracture with a predefined geometry and to have a proper distribution of proppant material within the fracture to keep the fracture walls open and allow oil and gas to flow to the surface. The hydraulic fracturing system contains limited real-time measurements of the actual fracture conditions largely due to the remote subterranean location where the fracture propagates. The fracturing process is characterized by multiphase transport, proppant settling, and coupling of fluid and fracture growth mechanics, all occurring within a time-varying spatial domain. These features present a challenge for the implementation of online feedback control of the fracture growth and proppant placement, and there are very few accounts of attempting this goal in the open literature. To address these issues, the current work proposes a control strategy that allows for closed-loop model-based control of the hydraulic fracturing process. Previous work introduced a dynamic fracture model capable of describing the fracture propagation, fluid and particle transport, proppant bank formation, and fracture closure processes necessary to determine the fracture state evolution and predict the fracture’s final performance. The QDMC (quadratic-dynamic matrix control) form of model-based control is studied. A particle filter provides a means for effective state estimation due to limited real-time measurements. Controlling the fracture geometry and proppant distribution within a hydraulic fracture is a novel application for real-time model-based control. Results of a numerical study are provided to demonstrate the performance of the closed-loop system.Item Correcting for focal-plane-array temperature dependence in microbolometer infrared cameras lacking thermal stabilization(2013-01) Nugent, Paul W.; Shaw, Joseph A.; Pust, Nathan J.Advances in microbolometer detectors have led to the development of infrared cameras that operate without active temperature stabilization. The response of these cameras varies with the temperature of the camera’s focal plane array (FPA). This paper describes a method for stabilizing the camera’s response through software processing. This stabilization is based on the difference between the camera’s response at a measured temperature and at a reference temperature. This paper presents the mathematical basis for such a correction and demonstrates the resulting accuracy when applied to a commercially available long-wave infrared camera. The stabilized camera was then radiometrically calibrated so that the digital response from the camera could be related to the radiance or temperature of objects in the scene. For FPA temperature deviations within ±7.2°C changing by 0.5°C/min, this method produced a camera calibration with spatial-temporal rms variability of 0.21°C, yielding a total calibration uncertainty of 0.38°C limited primarily by the 0.32°C uncertainty in the blackbody source emissivity and temperature.Item A Novel Method for Curvefitting the Stretched Exponential Function to Experimental Data(2013-12) June, Ronald K.; Cunningham, J. P.; Fyhrie, D. P.The stretched exponential function has many applications in modeling numerous types of experimental relaxation data. However, problems arise when using standard algorithms to fit this function: we have observed that different initializations result in distinct fitted parameters. To avoid this problem, we developed a novel algorithm for fitting the stretched exponential model to relaxation data. This method is advantageous both because it requires only a single adjustable parameter and because it does not require initialization in the solution space. We tested this method on simulated data and experimental stress-relaxation data from bone and cartilage and found favorable results compared to a commonly-used Quasi-Newton method. For the simulated data, strong correlations were found between the simulated and fitted parameters suggesting that this method can accurately determine stretched exponential parameters. When this method was tested on experimental data, high quality fits were observed for both bone and cartilage stress-relaxation data that were significantly better than those determined with the Quasi-Newton algorithm.Item Quantifying the effects of the division of labor in metabolic pathways(Elsevier, 2014-11) Harvey, Emily; Heys, Jeffrey J.; Gedeon, TomasDivision of labor is commonly observed in nature. There are several theories that suggest diversification in a microbial community may enhance stability and robustness, decrease concentration of inhibitory intermediates, and increase efficiency. Theoretical studies to date have focused on proving when the stable co-existence of multiple strains occurs, but have not investigated the productivity or biomass production of these systems when compared to a single ‘super microbe’ which has the same metabolic capacity. In this work we prove that if there is no change in the growth kinetics or yield of the metabolic pathways when the metabolism is specialised into two separate microbes, the biomass (and productivity) of a binary consortia system is always less than that of the equivalent monoculture. Using a specific example of Escherichia coli growing on a glucose substrate, we find that increasing the growth rates or substrate affinities of the pathways is not sufficient to explain the experimentally observed productivity increase in a community. An increase in pathway efficiency (yield) in specialised organisms provides the best explanation of the observed increase in productivity.