College of Engineering
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/27
The College of Engineering at Montana State University will serve the State of Montana and the nation by fostering lifelong learning, integrating learning and discovery, developing and sharing technical expertise, and empowering students to be tomorrow's leaders.
Browse
21 results
Search Results
Item Heterogeneous rpoS and rhlR mRNA levels and 16S rRNA/rDNA ratios within Pseudomonas aeruginosa biofilms, sampled by laser capture microdissection(2010-03) Perez-Osorio, Ailyn C.; Williamson, Kerry S.; Franklin, Michael J.The local environmental conditions in biofilms are dependent on the impinging aqueous solution, chemical diffusion, and the metabolic activities of cells within the biofilms. Chemical gradients established in biofilms lead to physiological heterogeneities of bacterial gene expression. Previously, we used laser capture microdissection (LCM) and quantitative RT-PCR to target defined biofilm subpopulations for gene expression studies. Here, we combined that approach with quantitative PCR of bacterial DNA to normalize gene expression per cell. By comparing the ratio of 16S rRNA to 16S rDNA, we demonstrate that cells at the top of thick Pseudomonas aeruginosa biofilms have 16S rRNA/genome ratios similar to cells in a transition between exponential and stationary phase. Cells in the middle and bottom layers of these biofilms have ratios that are not significantly different from stationary phase planktonic cultures. Since much of the biofilm appeared to be in a stationary phase-like state, we analyzed local amounts of the stationary phase sigma factor, rpoS, and a quorum sensing regulator, rhlR, per cell. Surprisingly, the amount of rpoS mRNA was greatest at the top of these biofilms at the air-biofilm interface. Less than one rpoS mRNA transcript per cell was observed in the middle or base of the biofilms. The rhlR mRNA content was also greatest at the top of these biofilms, with little detectable rhlR expression at the middle or bottom of the biofilms. While cell density is slightly greater at the bottom of the biofilms, expression of this quorum sensing regulator occurs primarily at the top of the biofilms, where cell metabolic activity is greatest, as indicated by the local expression of the housekeeping gene, acpP and by expression from a constitutive Ptrc promoter. The results indicate that in thick P. aeruginosa biofilms, cells in the 30 µm adjacent to the air-biofilm interface actively express genes associated with stationary phase, while cells in the interior portions do not express these genes, and therefore are in a late stationary phase-like state and are possibly dormant.Item Global transcriptional, physiological, and metabolite analyses of the responses of Desulfovibrio vulgaris Hildenborough to salt adaptation(2009-12) He, Zhili; Zhou, Aifen; Baidoo, Edward E. K.; He, Q.; Joachimiak, M. P.; Benke, P.; Phan, R.; Mukhopadhyay, A.; Hemme, C. L.; Huang, K.; Alm, E. J.; Fields, Matthew W.; Wall, Judy D.; Stahl, David A.; Hazen, Terry C.; Keasling, J. D.; Arkin, Adam P.; Zhou, JizhongThe response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by performing physiological, global transcriptional, and metabolite analyses. Salt adaptation was reflected by increased expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). The expression of genes involved in carbon metabolism, cell growth, and phage structures was decreased. Transcriptome profiles of D. vulgaris responses to salt adaptation were compared with transcriptome profiles of D. vulgaris responses to salt shock (short-term NaCl exposure). Metabolite assays showed that glutamate and alanine accumulated under salt adaptation conditions, suggesting that these amino acids may be used as osmoprotectants in D. vulgaris. Addition of amino acids (glutamate, alanine, and tryptophan) or yeast extract to the growth medium relieved salt-related growth inhibition. A conceptual model that links the observed results to currently available knowledge is proposed to increase our understanding of the mechanisms of D. vulgaris adaptation to elevated NaCl levels.Item Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants(2011-07) Gonzalez-Ballester, D.; Pootakham, W.; Mus, Florence; Yang, Wenqiang; Catalanotti, C.; Magneschi, L.; de Montaigu, A.; Higuera, J. J.; Prior, M.; Galvan, A.; Fernandez, E.; Grossman, A. R.A method was developed to identify insertional mutants of Chlamydomonas reinhardtii disrupted for selected target genes. The approach relies on the generation of thousands of transformants followed by PCR-based screenings that allow for identification of strains harboring the introduced marker gene within specific genes of interest. Our results highlight the strengths and limitations of two independent screens that differed in the nature of the marker DNA used (PCR-amplified fragment containing the plasmid-free marker versus entire linearized plasmid with the marker) and in the strategies used to maintain and store transformants.Item Shewanella oneidensis MR-1 sensory box protein involved in aerobic and anoxic growth(2011-03) Sundararajan, Anitha; Kurowski, J.; Yan, T.; Klingeman, D. M.; Joachimiak, M. P.; Zhou, Jizhong; Naranjo, B.; Gralnick, J. A.; Fields, Matthew W.Although little is known of potential function for conserved signaling proteins, it is hypothesized that such proteins play important roles to coordinate cellular responses to environmental stimuli. In order to elucidate the function of a putative sensory box protein (PAS domains) in Shewanella oneidensis MR-1, the physiological role of SO3389 was characterized. The predicted open reading frame (ORF) encodes a putative sensory box protein that has PAS, GGDEF, and EAL domains, and an in-frame deletion mutant was constructed (ΔSO3389) with approximately 95% of the ORF deleted. Under aerated conditions, wild-type and mutant cultures had similar growth rates, but the mutant culture had a lower growth rate under static, aerobic conditions. Oxygen consumption rates were lower for mutant cultures (1.5-fold), and wild-type cultures also maintained lower dissolved oxygen concentrations under aerated growth conditions. When transferred to anoxic conditions, the mutant did not grow with fumarate, iron(III), or dimethyl sulfoxide (DMSO) as electron acceptors. Biochemical assays demonstrated the expression of different c-type cytochromes as well as decreased fumarate reductase activity in the mutant transferred to anoxic growth conditions. Transcriptomic studies showed the inability of the mutant to up-express and down-express genes, including c-type cytochromes (e.g., SO4047/SO4048, SO3285/SO3286), reductases (e.g., SO0768, SO1427), and potential regulators (e.g., SO1329). The complemented strain was able to grow when transferred from aerobic to anoxic growth conditions with the tested electron acceptors. The modeled structure for the SO3389 PAS domains was highly similar to the crystal structures of FAD-binding PAS domains that are known O2/redox sensors. Based on physiological, genomic, and bioinformatic results, we suggest that the sensory box protein, SO3389, is an O2/redox sensor that is involved in optimization of aerobic growth and transitions to anoxia in S. oneidensis MR-1.Item Terminal oxidase diversity and function in Metallosphaera yellowstonensis: Gene expression and protein modeling suggest mechanisms of Fe(II) oxidation in the sulfolobales(2011-03) Kozubal, Mark A.; Dlakic, Mensur; Macur, Richard E.; Inskeep, William P.Metallosphaera yellowstonensis is a thermoacidophilic archaeon isolated from Yellowstone National Park that is capable of autotrophic growth using Fe(II), elemental S, or pyrite as electron donors. Analysis of the draft genome sequence from M. yellowstonensis strain MK1 revealed seven different copies of heme copper oxidases (subunit I) in a total of five different terminal oxidase complexes, including doxBCEF, foxABCDEFGHIJ, soxABC, and the soxM supercomplex, as well as a novel hypothetical two-protein doxB-like polyferredoxin complex. Other genes found in M. yellowstonensis with possible roles in S and or Fe cycling include a thiosulfate oxidase (tqoAB), a sulfite oxidase (som), a cbsA cytochrome b558/566, several small blue copper proteins, and a novel gene sequence coding for a putative multicopper oxidase (Mco). Results from gene expression studies, including reverse transcriptase (RT) quantitative PCR (qPCR) of cultures grown autotrophically on either Fe(II), pyrite, or elemental S showed that the fox gene cluster and mco are highly expressed under conditions where Fe(II) is an electron donor. Metagenome sequence and gene expression studies of Fe-oxide mats confirmed the importance of fox genes (e.g., foxA and foxC) and mco under Fe(II)-oxidizing conditions. Protein modeling of FoxC suggests a novel lysine-lysine or lysine-arginine heme B binding domain, indicating that it is likely the cytochrome component of a heterodimer complex with foxG as a ferredoxin subunit. Analysis of mco shows that it encodes a novel multicopper blue protein with two plastocyanin type I copper domains that may play a role in the transfer of electrons within the Fox protein complex.An understanding of metabolic pathways involved in aerobic iron and sulfur oxidation in Sulfolobales has broad implications for understanding the evolution and niche diversification of these thermophiles as well as practical applications in fields such as bioleaching of trace metals from pyritic ores.Item Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population(2012-02) Williamson, Kerry S.; Richards, Lee A.; Perez-Osorio, Ailyn C.; Pitts, Betsey; McInnerney, Kathleen; Stewart, Philip S.; Franklin, Michael J.Bacteria growing in biofilms are physiologically heterogeneous, due in part to their adaptation to local environmental conditions. Here, we characterized the local transcriptome responses of Pseudomonas aeruginosa growing in biofilms by using a microarray analysis of isolated biofilm subpopulations. The results demonstrated that cells at the top of the biofilms had high mRNA abundances for genes involved in general metabolic functions, while mRNA levels for these housekeeping genes were low in cells at the bottom of the biofilms. Selective green fluorescent protein (GFP) labeling showed that cells at the top of the biofilm were actively dividing. However, the dividing cells had high mRNA levels for genes regulated by the hypoxia-induced regulator Anr. Slow-growing cells deep in the biofilms had little expression of Anr-regulated genes and may have experienced long-term anoxia. Transcripts for ribosomal proteins were associated primarily with the metabolically active cell fraction, while ribosomal RNAs were abundant throughout the biofilms, indicating that ribosomes are stably maintained even in slowly growing cells. Consistent with these results was the identification of mRNAs for ribosome hibernation factors (the rmf and PA4463 genes) at the bottom of the biofilms. The dormant biofilm cells of a P. aeruginosa Δrmf strain had decreased membrane integrity, as shown by propidium iodide staining. Using selective GFP labeling and cell sorting, we show that the dividing cells are more susceptible to killing by tobramycin and ciprofloxacin. The results demonstrate that in thick P. aeruginosa biofilms, cells are physiologically distinct spatially, with cells deep in the biofilm in a viable but antibiotic-tolerant slow-growth state.Item Differential effects of planktonic and biofilm MRSA on human fibroblasts(2012-02) Kirker, Kelly R.; James, Garth A.; Fleckman, Philip; Olerud, John E.; Stewart, Philip S.Bacteria colonizing chronic wounds often exist as biofilms, yet their role in chronic wound pathogenesis remains unclear. Staphylococcus aureus biofilms induce apoptosis in dermal keratinocytes, and given that chronic wound biofilms also colonize dermal tissue, it is important to investigate the effects of bacterial biofilms on dermal fibroblasts. The effects of a predominant wound pathogen, methicillin-resistant S. aureus, on normal, human, dermal fibroblasts were examined in vitro. Cell-culture medium was conditioned with equivalent numbers of either planktonic or biofilm methicillin-resistant S. aureus and then fed to fibroblast cultures. Fibroblast response was evaluated using scratch, viability, and apoptosis assays. The results suggested that fibroblasts experience the same fate when exposed to the soluble products of either planktonic or biofilm methicillin-resistant S. aureus, namely limited migration followed by death. Enzyme-linked immunosorbent assays demonstrated that fibroblast production of cytokines, growth factors, and proteases were differentially affected by planktonic and biofilm-conditioned medium. Planktonic-conditioned medium induced more interleukin-6, interleukin-8, vascular endothelial growth factor, transforming growth factor-β1, heparin-bound epidermal growth factor, matrix metalloproteinase-1, and metalloproteinase-3 production in fibroblasts than the biofilm-conditioned medium. Biofilm-conditioned medium induced more tumor necrosis factor-α production in fibroblasts compared with planktonic-conditioned medium, and suppressed metalloproteinase-3 production compared with controls.Item A Mutant in the ADH1 gene of Chlamydomonas reinhardtii elicits metabolic restructuring during anaerobiosis(2012-01) Magneschi, L.; Catalanotti, C.; Subramanian, V.; Dubini, A.; Yang, Wenqiang; Mus, Florence; Posewitz, Matthew C.; Seibert, M.; Perata, P.; Grossman, A. R.The green alga Chlamydomonas reinhardtii has numerous genes encoding enzymes that function in fermentative pathways. Among these, the bifunctional alcohol/acetaldehyde dehydrogenase (ADH1), highly homologous to the Escherichia coli AdhE enzyme, is proposed to be a key component of fermentative metabolism. To investigate the physiological role of ADH1 in dark anoxic metabolism, a Chlamydomonas adh1 mutant was generated. We detected no ethanol synthesis in this mutant when it was placed under anoxia; the two other ADH homologs encoded on the Chlamydomonas genome do not appear to participate in ethanol production under our experimental conditions. Pyruvate formate lyase, acetate kinase, and hydrogenase protein levels were similar in wild-type cells and the adh1 mutant, while the mutant had significantly more pyruvate:ferredoxin oxidoreductase. Furthermore, a marked change in metabolite levels (in addition to ethanol) synthesized by the mutant under anoxic conditions was observed; formate levels were reduced, acetate levels were elevated, and the production of CO2 was significantly reduced, but fermentative H2 production was unchanged relative to wild-type cells. Of particular interest is the finding that the mutant accumulates high levels of extracellular glycerol, which requires NADH as a substrate for its synthesis. Lactate production is also increased slightly in the mutant relative to the control strain. These findings demonstrate a restructuring of fermentative metabolism in the adh1 mutant in a way that sustains the recycling (oxidation) of NADH and the survival of the mutant (similar to wild-type cell survival) during dark anoxic growth.Item Functional characterization of Crp/Fnr-Type global transcriptional regulators in Desulfovibrio vulgaris hildenborough(2012-02) Zhou, Aifen; Chen, Y. I.; Zane, Grant M.; He, Zhili; Hemme, C. L.; Joachimiak, M. P.; Baumohl, J. K.; He, Q.; Fields, Matthew W.; Arkin, Adam P.; Wall, Judy D.; Hazen, Terry C.; Zhou, JizhongCrp/Fnr-type global transcriptional regulators regulate various metabolic pathways in bacteria and typically function in response to environmental changes. However, little is known about the function of four annotated Crp/Fnr homologs (DVU0379, DVU2097, DVU2547, and DVU3111) in Desulfovibrio vulgaris Hildenborough. A systematic study using bioinformatic, transcriptomic, genetic, and physiological approaches was conducted to characterize their roles in stress responses. Similar growth phenotypes were observed for the crp/fnr deletion mutants under multiple stress conditions. Nevertheless, the idea of distinct functions of Crp/Fnr-type regulators in stress responses was supported by phylogeny, gene transcription changes, fitness changes, and physiological differences. The four D. vulgaris Crp/Fnr homologs are localized in three subfamilies (HcpR, CooA, and cc). The crp/fnr knockout mutants were well separated by transcriptional profiling using detrended correspondence analysis (DCA), and more genes significantly changed in expression in a ΔDVU3111 mutant (JW9013) than in the other three paralogs. In fitness studies, strain JW9013 showed the lowest fitness under standard growth conditions (i.e., sulfate reduction) and the highest fitness under NaCl or chromate stress conditions; better fitness was observed for a ΔDVU2547 mutant (JW9011) under nitrite stress conditions and a ΔDVU2097 mutant (JW9009) under air stress conditions. A higher Cr(VI) reduction rate was observed for strain JW9013 in experiments with washed cells. These results suggested that the four Crp/Fnr-type global regulators play distinct roles in stress responses of D. vulgaris. DVU3111 is implicated in responses to NaCl and chromate stresses, DVU2547 in nitrite stress responses, and DVU2097 in air stress responses.Item Genetic disruption of both Chlamydomonas reinhardtii [FeFe]-hydrogenases: Insight into the role of HYDA2 in H2 production(2012-01) Meuser, Jonathan E.; D'Adamo, S.; Jinkerson, R. E.; Mus, Florence; Yang, Wenqiang; Ghirardi, ML; Seibert, M.; Grossman, A. R.; Posewitz, Matthew C.Chlamydomonas reinhardtii (Chlamydomonas throughout) encodes two [FeFe]-hydrogenases, designated HYDA1 and HYDA2. While HYDA1 is considered the dominant hydrogenase, the role of HYDA2 is unclear. To study the individual functions of each hydrogenase and provide a platform for future bioengineering, we isolated the Chlamydomonas hydA1-1, hydA2-1 single mutants and the hydA1-1 hydA2-1 double mutant. A reverse genetic screen was used to identify a mutant with an insertion in HYDA2, followed by mutagenesis of the hydA2-1 strain coupled with a H2 chemosensor phenotypic screen to isolate the hydA1-1 hydA2-1 mutant. Genetic crosses of the hydA1-1 hydA2-1 mutant to wild-type cells allowed us to also isolate the single hydA1-1 mutant. Fermentative, photosynthetic, and in vitro hydrogenase activities were assayed in each of the mutant genotypes. Surprisingly, analyses of the hydA1-1 and hydA2-1 single mutants, as well as the HYDA1 and HYDA2 rescued hydA1-1 hydA2-1 mutant demonstrated that both hydrogenases are able to catalyze H2 production from either fermentative or photosynthetic pathways. The physiology of both mutant and complemented strains indicate that the contribution of HYDA2 to H2 photoproduction is approximately 25% that of HYDA1, which corresponds to similarly low levels of in vitro hydrogenase activity measured in the hydA1-1 mutant. Interestingly, enhanced in vitro and fermentative H2 production activities were observed in the hydA1-1 hydA2-1 strain complemented with HYDA1, while maximal H2-photoproduction rates did not exceed those of wild-type cells.
- «
- 1 (current)
- 2
- 3
- »