College of Engineering

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/27

The College of Engineering at Montana State University will serve the State of Montana and the nation by fostering lifelong learning, integrating learning and discovery, developing and sharing technical expertise, and empowering students to be tomorrow's leaders.

Browse

Search Results

Now showing 1 - 10 of 21
  • Thumbnail Image
    Item
    Answer Set Programming for Computing Constraints-Based Elementary Flux Modes: Application to Escherichia coli Core Metabolism
    (MDPI AG, 2020-12) Mahout, Maxime; Carlson, Ross P.; Peres, Sabine
    Elementary Flux Modes (EFMs) provide a rigorous basis to systematically characterize the steady state, cellular phenotypes, as well as metabolic network robustness and fragility. However, the number of EFMs typically grows exponentially with the size of the metabolic network, leading to excessive computational demands, and unfortunately, a large fraction of these EFMs are not biologically feasible due to system constraints. This combinatorial explosion often prevents the complete analysis of genome-scale metabolic models. Traditionally, EFMs are computed by the double description method, an efficient algorithm based on matrix calculation; however, only a few constraints can be integrated into this computation. They must be monotonic with regard to the set inclusion of the supports; otherwise, they must be treated in post-processing and thus do not save computational time. We present aspefm, a hybrid computational tool based on Answer Set Programming (ASP) and Linear Programming (LP) that permits the computation of EFMs while implementing many different types of constraints. We apply our methodology to the Escherichia coli core model, which contains 226×106 EFMs. In considering transcriptional and environmental regulation, thermodynamic constraints, and resource usage considerations, the solution space is reduced to 1118 EFMs that can be computed directly with aspefm. The solution set, for E. coli growth on O2 gradients spanning fully aerobic to anaerobic, can be further reduced to four optimal EFMs using post-processing and Pareto front analysis.
  • Thumbnail Image
    Item
    Role of hibernation promoting factor in ribosomal protein stability during Pseudomonas aeruginosa dormancy
    (MDPI, 2020-12) Theng, Sokuntheary; Williamson, Kerry S.; Franklin, Michael J.
    Pseudomonas aeruginosa is an opportunistic pathogen that causes biofilm-associated infections. P. aeruginosa can survive in a dormant state with reduced metabolic activity in nutrient-limited environments, including the interiors of biofilms. When entering dormancy, the bacteria undergo metabolic remodeling, which includes reduced translation and degradation of cellular proteins. However, a supply of essential macromolecules, such as ribosomes, are protected from degradation during dormancy. The small ribosome-binding proteins, hibernation promoting factor (HPF) and ribosome modulation factor (RMF), inhibit translation by inducing formation of inactive 70S and 100S ribosome monomers and dimers. The inactivated ribosomes are protected from the initial steps in ribosome degradation, including endonuclease cleavage of the ribosomal RNA (rRNA). Here, we characterized the role of HPF in ribosomal protein (rProtein) stability and degradation during P. aeruginosa nutrient limitation. We determined the effect of the physiological status of P. aeruginosa prior to starvation on its ability to recover from starvation, and on its rRNA and rProtein stability during cell starvation. The results show that the wild-type strain and a stringent response mutant (∆relA∆spoT strain) maintain high cellular abundances of the rProteins L5 and S13 over the course of eight days of starvation. In contrast, the abundances of L5 and S13 reduce in the ∆hpf mutant cells. The loss of rProteins in the ∆hpf strain is dependent on the physiology of the cells prior to starvation. The greatest rProtein loss occurs when cells are first cultured to stationary phase prior to starvation, with less rProtein loss in the ∆hpf cells that are first cultured to exponential phase or in balanced minimal medium. Regardless of the pre-growth conditions, P. aeruginosa recovery from starvation and the integrity of its rRNA are impaired in the absence of HPF. The results indicate that protein remodeling during P. aeruginosa starvation includes the degradation of rProteins, and that HPF is essential to prevent rProtein loss in starved P. aeruginosa. The results also indicate that HPF is produced throughout cell growth, and that regardless of the cellular physiological status, HPF is required to protect against ribosome loss when the cells subsequently enter starvation phase.
  • Thumbnail Image
    Item
    Subsurface hydrocarbon degradation strategies in low- and high-sulfate coal seam communities identified with activity-based metagenomics
    (Springer Science and Business Media LLC, 2022-02) Schweitzer, Hannah D.; Smith, Heidi J.; Barnhart, Elliott P.; McKay, Luke J.; Gerlach, Robin; Cunningham, Alfred B.; Malmstrom, Rex R.; Goudeau, Danielle; Fields, Matthew W.
    Environmentally relevant metagenomes and BONCAT-FACS derived translationally active metagenomes from Powder River Basin coal seams were investigated to elucidate potential genes and functional groups involved in hydrocarbon degradation to methane in coal seams with high- and low-sulfate levels. An advanced subsurface environmental sampler allowed the establishment of coal-associated microbial communities under in situ conditions for metagenomic analyses from environmental and translationally active populations. Metagenomic sequencing demonstrated that biosurfactants, aerobic dioxygenases, and anaerobic phenol degradation pathways were present in active populations across the sampled coal seams. In particular, results suggested the importance of anaerobic degradation pathways under high-sulfate conditions with an emphasis on fumarate addition. Under low-sulfate conditions, a mixture of both aerobic and anaerobic pathways was observed but with a predominance of aerobic dioxygenases. The putative low-molecular-weight biosurfactant, lichysein, appeared to play a more important role compared to rhamnolipids. The methods used in this study—subsurface environmental samplers in combination with metagenomic sequencing of both total and translationally active metagenomes—offer a deeper and environmentally relevant perspective on community genetic potential from coal seams poised at different redox conditions broadening the understanding of degradation strategies for subsurface carbon.
  • Thumbnail Image
    Item
    In Situ Enhancement and Isotopic Labeling of Biogenic Coalbed Methane
    (American Chemical Society, 2022-02) Barnhart, Elliott P.; Ruppert, Leslie; Hiebert, Randy; Smith, Heidi J.; Schweitzer, Hannah D.; Clark, Arthur C.; Weeks, Edwin P.; Orem, William H.; Varonka, Matthew S.; Platt, George; Shelton, Jenna L.; Davis, Katherine J.; Hyatt, Robert J.; McIntosh, Jennifer C.; Ashley, Kilian; Ono, Shuhei; Martini, Anna M.; Hackley, Keith C.; Gerlach, Robin; Spangler, Lee; Phillips, Adrienne J.; Barry, Mark; Cunningham, Alfred B.; Fields, Matthew W.
    Subsurface microbial (biogenic) methane production is an important part of the global carbon cycle that has resulted in natural gas accumulations in many coal beds worldwide. Laboratory studies suggest that complex carbon-containing nutrients (e.g., yeast or algae extract) can stimulate methane production, yet the effectiveness of these nutrients within coal beds is unknown. Here, we use downhole monitoring methods in combination with deuterated water (D2O) and a 200-liter injection of 0.1% yeast extract (YE) to stimulate and isotopically label newly generated methane. A total dissolved gas pressure sensor enabled real time gas measurements (641 days preinjection and for 478 days postinjection). Downhole samples, collected with subsurface environmental samplers, indicate that methane increased 132% above preinjection levels based on isotopic labeling from D2O, 108% based on pressure readings, and 183% based on methane measurements 266 days postinjection. Demonstrating that YE enhances biogenic coalbed methane production in situ using multiple novel measurement methods has immediate implications for other field-scale biogenic methane investigations, including in situ methods to detect and track microbial activities related to the methanogenic turnover of recalcitrant carbon in the subsurface.
  • Thumbnail Image
    Item
    Experimental Designs to Study the Aggregation and Colonization of Biofilms by Video Microscopy With Statistical Confidenc
    (Frontiers Media SA, 2022-01) Pettygrove, Brian A.; Smith, Heidi J.; Pallister, Kyler B.; Voyich, Jovanka M.; Stewart, Philip S.; Parker, Albert E.
    The goal of this study was to quantify the variability of confocal laser scanning microscopy (CLSM) time-lapse images of early colonizing biofilms to aid in the design of future imaging experiments. To accomplish this a large imaging dataset consisting of 16 independent CLSM microscopy experiments was leveraged. These experiments were designed to study interactions between human neutrophils and single cells or aggregates of Staphylococcus aureus (S. aureus) during the initial stages of biofilm formation. Results suggest that in untreated control experiments, variability differed substantially between growth phases (i.e., lag or exponential). When studying the effect of an antimicrobial treatment (in this case, neutrophil challenge), regardless of the inoculation level or of growth phase, variability changed as a frown-shaped function of treatment efficacy (i.e., the reduction in biofilm surface coverage). These findings were used to predict the best experimental designs for future imaging studies of early biofilms by considering differing (i) numbers of independent experiments; (ii) numbers of fields of view (FOV) per experiment; and (iii) frame capture rates per hour. A spreadsheet capable of assessing any user-specified design is included that requires the expected mean log reduction and variance components from user-generated experimental results. The methodology outlined in this study can assist researchers in designing their CLSM studies of antimicrobial treatments with a high level of statistical confidence.
  • Thumbnail Image
    Item
    Change Rippling through Our Waters and Culture
    (Wiley, 2020-04) Martin, Christine; Doyle, John; LaFrance, JoRee; Lefthand, Myra J.; Young, Sara L.; Three Irons, Emery; Eggers, Margaret J.
    It is well established that climate change is already causing a wide variety of human health impacts in the United States and globally, and that for many reasons Native Americans are particularly vulnerable. Tribal water security is particularly threatened; the ways in which climate changes are damaging community health and well-being through impacts on water resources have been addressed more thoroughly for Tribes in coastal, arid, and sub-arctic/arctic regions of the United States. In this article, Crow Tribal members from the Northern Plains describe the impacts of climate and environmental change on local water resources and ecosystems, and thereby on Tribal community health and well-being. Formal, qualitative research methodology was employed drawing on interviews with 26 Crow Tribal Elders. Multiple determinants of health are addressed, including cultural, social, economic, and environmental factors. The sense of environmental-cultural-health loss and despair at the inability to address the root causes of climate change are widespread. Yet the co-authors and many other Tribal members are actively prioritizing, addressing, and coping with some of the local impacts of these changes, and are carrying on Apsáalooke [Crow] lifeways and values.
  • Thumbnail Image
    Item
    The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases
    (American Association for the Advancement of Science, 2021-10) Altae-Tran, Han; Kannan, Soumya; Demircioglu, F. Esra; Oshiro, Rachel; Nety, Suchita P.; McKay, Luke J.; Dlakić, Mensur; Inskeep, William P.; Makarova, Kira S.; Macrae, Rhiannon K.; Koonin, Eugene V.; Zhang, Feng
    IscB proteins are putative nucleases encoded in a distinct family of IS200/IS605 transposons and are likely ancestors of the RNA-guided endonuclease Cas9, but the functions of IscB and its interactions with any RNA remain uncharacterized. Using evolutionary analysis, RNA sequencing, and biochemical experiments, we reconstructed the evolution of CRISPR-Cas9 systems from IS200/IS605 transposons. We found that IscB uses a single noncoding RNA for RNA-guided cleavage of double-stranded DNA and can be harnessed for genome editing in human cells. We also demonstrate the RNA-guided nuclease activity of TnpB, another IS200/IS605 transposon-encoded protein and the likely ancestor of Cas12 endonucleases. This work reveals a widespread class of transposon-encoded RNA-guided nucleases, which we name OMEGA (obligate mobile element–guided activity), with strong potential for developing as biotechnologies.
  • Thumbnail Image
    Item
    The establishment of the CBE launched biofilms as a field of specialized research
    (The establishment of the CBE launched biofilms as a field of specialized research, 2020-12) Fields, Matthew W.; Sturman, Paul; Anderson, Skip
    The Center for Biofilm Engineering was the first center of excellence focused on biofilms and was originally funded through the Engineering Research Center Program from the U.S. National Science Foundation. After almost 30 years, biofilm continues to be a stand-alone scientific topic of inquiry that has broad implications for fundamental and applied science and engineering of bio-systems. However, much remains to be done, not only for research discovery but also education and outreach, to increase and grow the biofilm paradigm as well as our understanding of the microbial world.
  • Thumbnail Image
    Item
    Sulfenate Esters of Simple Phenols Exhibit Enhanced Activity against Biofilms
    (American Chemical Society, 2020-03) Walsh, Danica J.; Livinghouse, Tom; Durling, Greg M.; Chase-Bayless, Yenny; Arnold, Adrienne D.; Stewart, Philip S.
    The recalcitrance exhibited by microbial biofilms to conventional disinfectants has motivated the development of new chemical strategies to control and eradicate biofilms. The activities of several small phenolic compounds and their trichloromethylsulfenyl ester derivatives were evaluated against planktonic cells and mature biofilms of Staphylococcus epidermidis and Pseudomonas aeruginosa. Some of the phenolic parent compounds are well-studied constituents of plant essential oils, for example, eugenol, menthol, carvacrol, and thymol. The potency of sulfenate ester derivatives was markedly and consistently increased toward both planktonic cells and biofilms. The mean fold difference between the parent and derivative minimum inhibitory concentration against planktonic cells was 44 for S. epidermidis and 16 for P. aeruginosa. The mean fold difference between the parent and derivative biofilm eradication concentration for 22 tested compounds against both S. epidermidis and P. aeruginosa was 3. This work demonstrates the possibilities of a new class of biofilm-targeting disinfectants deploying a sulfenate ester functional group to increase the antimicrobial potency toward microorganisms in biofilms.
  • Thumbnail Image
    Item
    Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor
    (Springer Science and Business Media LLC, 2019-11) Park, Heejoon; McGill, S. Lee; Arnold, Adrienne D.; Carlson, Ross P.
    Microorganisms acquire energy and nutrients from dynamic environments, where substrates vary in both type and abundance. The regulatory system responsible for prioritizing preferred substrates is known as carbon catabolite repression (CCR). Two broad classes of CCR have been documented in the literature. The best described CCR strategy, referred to here as classic CCR (cCCR), has been experimentally and theoretically studied using model organisms such as Escherichia coli. cCCR phenotypes are often used to generalize universal strategies for fitness, sometimes incorrectly. For instance, extremely competitive microorganisms, such as Pseudomonads, which arguably have broader global distributions than E. coli, have achieved their success using metabolic strategies that are nearly opposite of cCCR. These organisms utilize a CCR strategy termed ‘reverse CCR’ (rCCR), because the order of preferred substrates is nearly reverse that of cCCR. rCCR phenotypes prefer organic acids over glucose, may or may not select preferred substrates to optimize growth rates, and do not allocate intracellular resources in a manner that produces an overflow metabolism. cCCR and rCCR have traditionally been interpreted from the perspective of monocultures, even though most microorganisms live in consortia. Here, we review the basic tenets of the two CCR strategies and consider these phenotypes from the perspective of resource acquisition in consortia, a scenario that surely influenced the evolution of cCCR and rCCR. For instance, cCCR and rCCR metabolism are near mirror images of each other; when considered from a consortium basis, the complementary properties of the two strategies can mitigate direct competition for energy and nutrients and instead establish cooperative division of labor.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.