College of Engineering

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/27

The College of Engineering at Montana State University will serve the State of Montana and the nation by fostering lifelong learning, integrating learning and discovery, developing and sharing technical expertise, and empowering students to be tomorrow's leaders.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Implementing wildlife fences along highways at the appropriate spatial scale: A case study of reducing road mortality of Florida Key deer
    (Pensoft Publishers, 2022-03) Huijser, Marcel P.; Begley, James S.
    Florida Key deer mortality data (1966–2017) showed that about 75% of all reported deer mortalities were related to collisions with vehicles. In 2001–2002, the eastern section of US Hwy 1 on Big Pine Key (Florida, USA) was mitigated with a wildlife fence, 2 underpasses, and 4 deer guards. After mitigation, the number of reported Key deer road mortalities reduced substantially in the mitigated section, but this was negated by an increase in collisions along the unmitigated section of US Hwy 1 on Big Pine Key, both in absolute numbers and expressed as a percentage of the total deer population size. The data also showed that the increase in Key deer collisions along the unmitigated highway section on the island could not be explained through an increase in Key deer population size, or by a potential increase in traffic volume. The overall Key deer road mortality along US Hwy 1 was not reduced but was moved from the mitigated section to the nearby unmitigated section. Thus, there was no net benefit of the fence in reducing collisions. After mitigation, a significant hotspot of Key deer-vehicle collisions appeared at the western fence-end, and additional hotspots occurred further west along the unmitigated highway. Exploratory spatial analyses led us to reject the unmitigated highway section on Big Pine Key as a suitable control for a Before-After-Control-Impact (BACI) analysis into the effectiveness of the mitigation measures in reducing deer-vehicle collisions. Instead, we selected highway sections west and east of Big Pine Key as a control. The BACI analysis showed that the wildlife fence and associated mitigation measures were highly effective (95%) in reducing deer-vehicle collisions along the mitigated highway section. Nonetheless, in order to reduce the overall number of deer-vehicle collisions along US Hwy 1, the entire highway section on Big Pine Key would need to be mitigated. However, further mitigation is complicated because of the many buildings and access roads for businesses and residences. This case study illustrates that while fences and associated measures can be very effective in reducing collisions, wildlife fences that are too short may result in an increase in collisions in nearby unmitigated road sections, especially near fence-ends. Therefore it is important to carefully consider the appropriate spatial scale over which highway mitigation measures are implemented and evaluated.
  • Thumbnail Image
    Item
    On the Road Without a Map: Why We Need an “Ethic of Road Ecology”
    (Frontiers Media SA, 2021-11) Moore, Lauren J.; Arietta, A. Z. Andis; Spencer, Daniel T.; Huijser, Marcel P.
    Over the past two decades, our knowledge of the ecological impacts of roads has increased rapidly. It is now clear that the environmental effects of transportation infrastructure are inextricable from transportation benefits to economic, social, and cultural values. Despite the necessity of optimizing these multiple values, road planners, scientists, and practitioners have no established methodology or pluralistic approach to address growing ethical complexities. We articulate five ethical issues that could be addressed by developing an ethic of road ecology in order to facilitate the identification, reasoning, and harmonization of ethical dimensions of road planning and development. This inquiry into road ecology can draw lessons from existing applied ethics, such as in ecological restoration and urban planning, to build a narrative that is informed by both science and ethics. We illustrate five ethical issues presented through case studies that elaborate on the motivations, responsibilities, and duties that should be considered in ethically and scientifically complicated road building decisions. To address these issues, we encourage the development of a code of ethics, dedicated intellectual forums, and practical guidance to assist road planners, and more broadly transportation practitioners, to resolve complex ethical quandaries systematically. We hope this perspective encourages conversation for a holistic yet pragmatic approach to this applied ethics problem, while also assisting responsible parties as they navigate difficult moral terrain.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.