College of Engineering
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/27
The College of Engineering at Montana State University will serve the State of Montana and the nation by fostering lifelong learning, integrating learning and discovery, developing and sharing technical expertise, and empowering students to be tomorrow's leaders.
Browse
2 results
Search Results
Item Design of Experiment to Determine the Effect of the Geometric Variables on Tensile Properties of Carbon Fiber Reinforced Polymer Composites(MDPI AG, 2023-05) Janicki, Joseph C.; Egloff, Matthew C.; Bajwa, Dilpreet S.; Amendola, Roberta; Ryan, Cecily A.; Cairns, Douglas S.Carbon fiber reinforced polymers (CFRPs) are increasingly used in the aerospace industry because of their robust mechanical properties and strength to weight ratio. A significant drawback of CFRPs is their resistance to formability when drawing continuous CFRPs into complex shapes as it tends to bridge, resulting in various defects in the final product. However, CFRP made from Stretch Broken Carbon Fiber (SBCF) aims to solve this issue by demonstrating superior formability compared to conventional continuous CFRPs. To study and validate the performance of SBCF, a statistical design of the experiment was conducted using three different types of CFRPs in tow/tape form. Hexcel (Stamford, CT, USA) IM7-G continuous carbon fiber impregnated with Huntsman (The Woodlands, TX, USA) RDM 2019-053 resin system, Hexcel SBCF impregnated with RDM2019-053 resin, and Montana State University manufactured SBCF impregnated with Huntsman RDM 2019-053 resin were tested in a multitude of forming trials and the data were analyzed using a statistical model to evaluate the forming behavior of each fiber type. The results show that for continuous fiber CFRP tows forming, Fmax and Δmax do not show statistical significance based on temperature fluctuations; however, in SBCF CFRP tows forming, Fmax and Δmax is dominated by the temperature and geometry has a low statistical influence on the Fmax. The lower dependence on tool geometry at higher temperatures indicates possibly superior formability of MSU SBCF. Overall findings from this research help define practical testing methods to compare different CFRPs and provide a repeatable approach to creating a statistical model for measuring results from the formability trials.Item Silane compatibilzation to improve the dispersion, thermal and mechancial properties of cellulose nanocrystals in poly (ethylene oxide)(Informa UK Limited, 2021-01) Chanda, Saptaparni; Bajwa, Dilpreet S.; Holt, Greg A.; Stark, Nicole; Bajwa, Sreekala G.; Quadir, MohiuddinCellulose nanocrystal (CNC) has potential to be used as a reinforcement in polymeric nanocomposites because of their inherent biodegradability, universal accessibility, and superior mechanical properties. The most crucial challenge faced in the nanocomposite production is dispersing the nanoparticles effectively in the polymer matrix, so that the exceptional mechanical properties of the nanoparticles can be transferred to the macroscale properties to the bulk nanocomposites. In this research, a safe, effective and ecofriendly modification was used to functionalize the surface hydroxyl groups of CNC via silane treatment. These modified CNCs were used as reinforcements to prepare poly (ethylene oxide) (PEO)/CNC nanocomposites. The composites were prepared using solvent casting method. The composite properties were evaluated using Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Dynamic Mechanical Analysis (DMA). The SEM micrographs demonstrated that the composites incorporated with silane treated CNCs showed improvement in the dispersion behavior of the nanoparticles in the matrix. Oxidative combustion of the composites containing silane treated CNCs promoted char formation and enhanced thermal stability. The composites containing (1:1) silane treated CNCs exhibited the better crystallization ability, highest storage modulus, and lowest tan δ value compared to the other silane treated systems indicating improved dispersion of CNC. The polysiloxane network provided an efficient surface covering of the CNC molecules, imparting reduced polar surface characteristics and enhancing the overall mechanical properties of the composites.