Publications by Colleges and Departments (MSU - Bozeman)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/3

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    Environment Constrains Fitness Advantages of Division of Labor in Microbial Consortia Engineered for Metabolite Push or Pull Interactions
    (American Society for Microbiology, 2022-08) Beck, Ashely E.; Pintar, Kathryn; Schepens, Diana; Schrammeck, Ashely; Johnson, Timothy; Bleem, Alissa; Du, Martina; Harcombe, William R.; Bernstein, Hans C.; Heys, Jeffrey J.; Gedeon, Tomas; Carlson, Ross P.
    Fitness benefits from division of labor are well documented in microbial consortia, but the dependency of the benefits on environmental context is poorly understood. Two synthetic Escherichia coli consortia were built to test the relationships between exchanged organic acid, local environment, and opportunity costs of different metabolic strategies. Opportunity costs quantify benefits not realized due to selecting one phenotype over another. The consortia catabolized glucose and exchanged either acetic or lactic acid to create producer-consumer food webs. The organic acids had different inhibitory properties and different opportunity costs associated with their positions in central metabolism. The exchanged metabolites modulated different consortial dynamics. The acetic acid-exchanging (AAE) consortium had a “push” interaction motif where acetic acid was secreted faster by the producer than the consumer imported it, while the lactic acid-exchanging (LAE) consortium had a “pull” interaction motif where the consumer imported lactic acid at a comparable rate to its production. The LAE consortium outperformed wild-type (WT) batch cultures under the environmental context of weakly buffered conditions, achieving a 55% increase in biomass titer, a 51% increase in biomass per proton yield, an 86% increase in substrate conversion, and the complete elimination of by-product accumulation all relative to the WT. However, the LAE consortium had the trade-off of a 42% lower specific growth rate. The AAE consortium did not outperform the WT in any considered performance metric. Performance advantages of the LAE consortium were sensitive to environment; increasing the medium buffering capacity negated the performance advantages compared to WT.
  • Thumbnail Image
    Item
    Competitive resource allocation to metabolic pathways contributes to overflow metabolisms and emergent properties in cross-feeding microbial consortia
    (2018-04) Carlson, Ross P.; Beck, Ashley E.; Phalak, Poonam; Fields, Matthew W.; Gedeon, Tomas; Hanley, Luke; Harcombe, W. R.; Henson, Michael A.; Heys, Jeffrey J.
    Resource scarcity is a common stress in nature and has a major impact on microbial physiology. This review highlights microbial acclimations to resource scarcity, focusing on resource investment strategies for chemoheterotrophs from the molecular level to the pathway level. Competitive resource allocation strategies often lead to a phenotype known as overflow metabolism; the resulting overflow byproducts can stabilize cooperative interactions in microbial communities and can lead to cross-feeding consortia. These consortia can exhibit emergent properties such as enhanced resource usage and biomass productivity. The literature distilled here draws parallels between in silico and laboratory studies and ties them together with ecological theories to better understand microbial stress responses and mutualistic consortia functioning.
  • Thumbnail Image
    Item
    Effects of Spatial Localization on Microbial Consortia Growth
    (2017-01) Venters, Michael; Carlson, Ross P.; Gedeon, Tomas; Heys, Jeffrey J.
    Microbial consortia are commonly observed in natural and synthetic systems, and these consortia frequently result in higher biomass production relative to monocultures. The focus here is on the impact of initial spatial localization and substrate diffusivity on the growth of a model microbial consortium consisting of a producer strain that consumes glucose and produces acetate and a scavenger strain that consumes the acetate. The mathematical model is based on an individual cell model where growth is described by Monod kinetics, and substrate transport is described by a continuum-based, non-equilibrium reaction-diffusion model where convective transport is negligible (e.g., in a biofilm). The first set of results focus on a single producer cell at the center of the domain and surrounded by an initial population of scavenger cells. The impact of the initial population density and substrate diffusivity is examined. A transition is observed from the highest initial density resulting in the greatest cell growth to cell growth being independent of initial density. A high initial density minimizes diffusive transport time and is typically expected to result in the highest growth, but this expected behavior is not predicted in environments with lower diffusivity or larger length scales. When the producer cells are placed on the bottom of the domain with the scavenger cells above in a layered biofilm arrangement, a similar critical transition is observed. For the highest diffusivity values examined, a thin, dense initial scavenger layer is optimal for cell growth. However, for smaller diffusivity values, a thicker, less dense initial scavenger layer provides maximal growth. The overall conclusion is that high density clustering of members of a food chain is optimal under most common transport conditions, but under some slow transport conditions, high density clustering may not be optimal for microbial growth.
  • Thumbnail Image
    Item
    Symmetry breaking clusters in soft clustering decoding of neural codes
    (2010-02) Parker, Albert E.; Dimitrov, Alexander G.; Gedeon, Tomas
    Information-based distortion methods have been used successfully in the analysis of neural coding problems. These approaches allow the discovery of neural symbols and the corresponding stimulus space of a neuron or neural ensemble quantitatively, while making few assumptions about the nature of either the code or of relevant stimulus features. The neural codebook is derived by quantizing sensory stimuli and neural responses into a small set of clusters, and optimizing the quantization to minimize an information distortion function. The method of annealing has been used to solve the corresponding high-dimensional nonlinear optimization problem. The annealing solutions undergo a series of bifurcations, which we study using bifurcation theory in the presence of symmetries. In this contribution we describe these symmetry breaking bifurcations in detail, and indicate some of the consequences of the form of the bifurcations. In particular, we show that the annealing solutions break symmetry at pitchfork bifurcations, and that subcritical branches can exist. Thus, at a subcritical bifurcation, there are local information distortion solutions which are not found by the method of annealing. Since the annealing procedure is guaranteed to converge to a local solution eventually, the subcritical branch must turn and become optimal at some later saddle-node bifurcation, which we have shown occur generically for this class of problems. This implies that the rate distortion curve, while convex for noninformation-based distortion measures, is not convex for information-based distortion methods.
  • Thumbnail Image
    Item
    Quantifying the effects of the division of labor in metabolic pathways
    (Elsevier, 2014-11) Harvey, Emily; Heys, Jeffrey J.; Gedeon, Tomas
    Division of labor is commonly observed in nature. There are several theories that suggest diversification in a microbial community may enhance stability and robustness, decrease concentration of inhibitory intermediates, and increase efficiency. Theoretical studies to date have focused on proving when the stable co-existence of multiple strains occurs, but have not investigated the productivity or biomass production of these systems when compared to a single ‘super microbe’ which has the same metabolic capacity. In this work we prove that if there is no change in the growth kinetics or yield of the metabolic pathways when the metabolism is specialised into two separate microbes, the biomass (and productivity) of a binary consortia system is always less than that of the equivalent monoculture. Using a specific example of Escherichia coli growing on a glucose substrate, we find that increasing the growth rates or substrate affinities of the pathways is not sufficient to explain the experimentally observed productivity increase in a community. An increase in pathway efficiency (yield) in specialised organisms provides the best explanation of the observed increase in productivity.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.