Plant Sciences & Plant Pathology
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/12
The Department of Plant Sciences and Plant Pathology is part of the College of Agriculture at Montana State University in Bozeman. An exciting feature of this department is the diversity of programs in Plant Biology, Crop Science, Plant Pathology, Horticulture, Mycology, Plant Genetics and Entomology. The department offers BS, MS, and Ph.D. degree program
Browse
Item Abiotic stress miRNomes in the Triticeae(2017-03) Alptekin, Burcu; Langridge, Peter; Budak, HikmetThe continued growth in world population necessitates increases in both the quantity and quality of agricultural production. Triticeae members, particularly wheat and barley, make an important contribution to world food reserves by providing rich sources of carbohydrate and protein. These crops are grown over diverse production environments that are characterized by a range of environmental or abiotic stresses. Abiotic stresses such as drought, heat, salinity, or nutrient deficiencies and toxicities cause large yield losses resulting in economic and environmental damage. The negative effects of abiotic stresses have increased at an alarming rate in recent years and are predicted to further deteriorate due to climate change, land degradation, and declining water supply. New technologies have provided an important tool with great potential for improving crop tolerance to the abiotic stresses: microRNAs (miRNAs). miRNAs are small regulators of gene expression that act on many different molecular and biochemical processes such as development, environmental adaptation, and stress tolerance. miRNAs can act at both the transcriptional and post-transcriptional levels, although post-transcriptional regulation is the most common in plants where miRNAs can inhibit the translation of their mRNA targets via complementary binding and cleavage. To date, expression of several miRNA families such as miR156, miR159, and miR398 has been detected as responsive to environmental conditions to regulate stress-associated molecular mechanisms individually and/or together with their various miRNA partners. Manipulation of these miRNAs and their targets may pave the way to improve crop performance under several abiotic stresses. Here, we summarize the current status of our knowledge on abiotic stress-associated miRNAs in members of the Triticeae tribe, specifically in wheat and barley, and the miRNA-based regulatory mechanisms triggered by stress conditions. Exploration of further miRNA families together with their functions under stress will improve our knowledge and provide opportunities to enhance plant performance to help us meet global food demand.Item CRISPR/Cas9 genome editing in wheat(2017-09) Kim, Dongjin; Alptekin, Burcu; Budak, HikmetGenome editing has been a long-term challenge for molecular biology research, particularly for plants possess complex genome. The recently discovered Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system is a versatile tool for genome editing which enables editing of multiple genes based on the guidance of small RNAs. Even though the efficiency of CRISPR/Cas9 system has been shown with several studies from diploid plants, its application remains a challenge for plants with polyploid and complex genome. Here, we applied CRISPR/Cas9 genome editing system in wheat protoplast to conduct the targeted editing of stress-responsive transcription factor genes, wheat dehydration responsive element binding protein 2 (TaDREB2) and wheat ethylene responsive factor 3 (TaERF3). Targeted genome editing of TaDREB2 and TaERF3 was achieved with transient expression of small guide RNA and Cas9 protein in wheat protoplast. The effectiveness of mutagenesis in wheat protoplast was confirmed with restriction enzyme digestion assay, T7 endonuclease assay, and sequencing. Furthermore, several off-target regions for designed sgRNAs were analyzed, and the specificity of genome editing was confirmed with amplicon sequencing. Overall results suggested that CRISPR/Cas9 genome editing system can easily be established on wheat protoplast and it has a huge potentiality for targeted manipulation of wheat genome for crop improvement purposes.Item A large-scale multiomics analysis of wheat stem solidness and the wheat stem sawfly feeding response, and syntenic associations in barley, Brachypodium, and rice(2018-02) Biyiklioglu, Sezgi; Alptekin, Burcu; Akpinar, B. Ani; Varella, Andrea C.; Hofland, Megan L.; Weaver, David K.; Bothner, Brian; Budak, HikmetThe wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae), is an important pest of wheat and other cereals, threatening the quality and quantity of grain production. WSS larvae feed and develop inside the stem where they are protected from the external environment; therefore, pest management strategies primarily rely on host plant resistance. A major locus on the long arm of wheat chromosome 3B underlies most of the variation in stem solidness; however, the impact of stem solidness on WSS feeding has not been completely characterized. Here, we used a multiomics approach to examine the response to WSS in both solid- and semi-solid-stemmed wheat varieties. The combined transcriptomic, proteomic, and metabolomic data revealed that two important molecular pathways, phenylpropanoid and phosphate pentose, are involved in plant defense against WSS. We also detected a general downregulation of several key defense transcripts, including those encoding secondary metabolites such as DIMBOA, tricetin, and lignin, which suggested that the WSS larva might interfere with plant defense. We comparatively analyzed the stem solidness genomic region known to be associated with WSS tolerance in wild emmer, durum, and bread wheats, and described syntenic regions in the close relatives barley, Brachypodium, and rice. Additionally, microRNAs identified from the same genomic region revealed potential regulatory pathways associated with the WSS response. We propose a model outlining the molecular responses of the WSS-wheat interactions. These findings provide insight into the link between stem solidness and WSS feeding at the molecular level.Item RNA Sequencing and Co-expressed Long Non-coding RNA in Modern and Wild Wheats(2017-09) Cagirici, Halise Busra; Alptekin, Burcu; Budak, HikmetThere is an urgent need for the improvement of drought-tolerant bread and durum wheat. The huge and complex genome of bread wheat (BBAADD genome) stands as a vital obstruction for understanding the molecular mechanism underlying drought tolerance. However, tetraploid wheat (Triticum turgidum ssp., BBAA genome) is an ancestor of modern bread wheat and offers an important model for studying the drought response due to its less complex genome. Additionally, several wild relatives of tetraploid wheat have already shown a significant drought tolerance. We sequenced root transcriptome of three tetraploid wheat varieties with varying stress tolerance profiles, and built differential expression library of their transcripts under control and drought conditions. More than 5,000 differentially expressed transcripts were identified from each genotype. Functional characterization of transcripts specific to drought-tolerant genotype, revealed their association with osmolytes production and secondary metabolite pathways. Comparative analysis of differentially expressed genes and their non-coding RNA partners, long noncoding RNAs and microRNAs, provided valuable insight to gene expression regulation in response to drought stress. LncRNAs as well as coding transcripts share similar structural features in different tetraploid species; yet, lncRNAs slightly differ from coding transcripts. Several miRNA-lncRNA target pairs were detected as differentially expressed in drought stress. Overall, this study suggested an important pool of transcripts where their manipulations confer a better performance of wheat varieties under drought stress.