Plant Sciences & Plant Pathology
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/12
The Department of Plant Sciences and Plant Pathology is part of the College of Agriculture at Montana State University in Bozeman. An exciting feature of this department is the diversity of programs in Plant Biology, Crop Science, Plant Pathology, Horticulture, Mycology, Plant Genetics and Entomology. The department offers BS, MS, and Ph.D. degree program
Browse
4 results
Search Results
Item Characterization Factors to Assess Land Use Impacts on Pollinator Abundance in Life Cycle Assessment(American Chemical Society, 2023-02) Alejandre, Elizabeth M.; Scherer, Laura; Guinée, Jeroen B.; Aizen, Marcelo A.; Albrecht, Matthias; Balzan, Mario V.; Bartomeus, Ignasi; Bevk, Danilo; Burkle, Laura A.; Clough, Yann; Cole, Lorna J.; Delphia, Casey M.; Dicks, Lynn V.; Garratt, Michael P.D.; Kleijn, David; Kovács-Hostyánszki, Anikó; Mandelik, Yael; Paxton, Robert J.; Petanidou, Theodora; Potts, Simon; Sárospataki, Miklós; Schulp, Catharina J.E.; Stavrinides, Menelaos; Stein, Katharina; Stout, Jane C.; Szentgyörgyi, Hajnalka; Varnava, Androulla I.; Woodcock, Ben A.; van Bodegom, Peter M.While wild pollinators play a key role in global food production, their assessment is currently missing from the most commonly used environmental impact assessment method, Life Cycle Assessment (LCA). This is mainly due to constraints in data availability and compatibility with LCA inventories. To target this gap, relative pollinator abundance estimates were obtained with the use of a Delphi assessment, during which 25 experts, covering 16 nationalities and 45 countries of expertise, provided scores for low, typical, and high expected abundance associated with 24 land use categories. Based on these estimates, this study presents a set of globally generic characterization factors (CFs) that allows translating land use into relative impacts to wild pollinator abundance. The associated uncertainty of the CFs is presented along with an illustrative case to demonstrate the applicability in LCA studies. The CFs based on estimates that reached consensus during the Delphi assessment are recommended as readily applicable and allow key differences among land use types to be distinguished. The resulting CFs are proposed as the first step for incorporating pollinator impacts in LCA studies, exemplifying the use of expert elicitation methods as a useful tool to fill data gaps that constrain the characterization of key environmental impacts.Item Longitudinal monitoring of honey bee colonies reveals dynamic nature of virus abundance and indicates a negative impact of Lake Sinai virus 2 on colony health(Public Library of Science, 2020-09) Faurot-Daniels, Cayley; Glenny, William; Daughenbaugh, Katie F.; McMenamin, Alexander J.; Burkle, Laura A.; Flenniken, Michelle L.Honey bees (Apis mellifera) are important pollinators of plants, including those that produce nut, fruit, and vegetable crops. Therefore, high annual losses of managed honey bee colonies in the United States and many other countries threaten global agriculture. Honey bee colony deaths have been associated with multiple abiotic and biotic factors, including pathogens, but the impact of virus infections on honey bee colony population size and survival are not well understood. To further investigate seasonal patterns of pathogen presence and abundance and the impact of viruses on honey bee colony health, commercially managed colonies involved in the 2016 California almond pollination event were monitored for one year. At each sample date, colony health and pathogen burden were assessed. Data from this 50-colony cohort study illustrate the dynamic nature of honey bee colony health and the temporal patterns of virus infection. Black queen cell virus, deformed wing virus, sacbrood virus, and the Lake Sinai viruses were the most readily detected viruses in honey bee samples obtained throughout the year. Analyses of virus prevalence and abundance revealed pathogen-specific trends including the overall increase in deformed wing virus abundance from summer to fall, while the levels of Lake Sinai virus 2 (LSV2) decreased over the same time period. Though virus prevalence and abundance varied in individual colonies, analyses of the overall trends reveal correlation with sample date. Total virus abundance increased from November 2015 (post-honey harvest) to the end of the almond pollination event in March 2016, which coincides with spring increase in colony population size. Peak total virus abundance occurred in late fall (August and October 2016), which correlated with the time period when the majority of colonies died. Honey bee colonies with larger populations harbored less LSV2 than weaker colonies with smaller populations, suggesting an inverse relationship between colony health and LSV2 abundance. Together, data from this and other longitudinal studies at the colony level are forming a better understanding of the impact of viruses on honey bee colony losses.Item Longitudinal monitoring of honey bee colonies reveals dynamic nature of virus abundance and indicates a negative impact of Lake Sinai virus 2 on colony health(2020-09) Faurot-Daniels, Cayley; Glenny, William; Daughenbaugh, Katie F.; McMenamin, Alexander J.; Burkle, Laura A.; Flenniken, Michelle L.Honey bees (Apis mellifera) are important pollinators of plants, including those that produce nut, fruit, and vegetable crops. Therefore, high annual losses of managed honey bee colonies in the United States and many other countries threaten global agriculture. Honey bee colony deaths have been associated with multiple abiotic and biotic factors, including pathogens, but the impact of virus infections on honey bee colony population size and survival are not well understood. To further investigate seasonal patterns of pathogen presence and abundance and the impact of viruses on honey bee colony health, commercially managed colonies involved in the 2016 California almond pollination event were monitored for one year. At each sample date, colony health and pathogen burden were assessed. Data from this 50-colony cohort study illustrate the dynamic nature of honey bee colony health and the temporal patterns of virus infection. Black queen cell virus, deformed wing virus, sacbrood virus, and the Lake Sinai viruses were the most readily detected viruses in honey bee samples obtained throughout the year. Analyses of virus prevalence and abundance revealed pathogen-specific trends including the overall increase in deformed wing virus abundance from summer to fall, while the levels of Lake Sinai virus 2 (LSV2) decreased over the same time period. Though virus prevalence and abundance varied in individual colonies, analyses of the overall trends reveal correlation with sample date. Total virus abundance increased from November 2015 (post-honey harvest) to the end of the almond pollination event in March 2016, which coincides with spring increase in colony population size. Peak total virus abundance occurred in late fall (August and October 2016), which correlated with the time period when the majority of colonies died. Honey bee colonies with larger populations harbored less LSV2 than weaker colonies with smaller populations, suggesting an inverse relationship between colony health and LSV2 abundance. Together, data from this and other longitudinal studies at the colony level are forming a better understanding of the impact of viruses on honey bee colony losses.Item Wildflower Seed Sales as Incentive for Adopting Flower Strips for Native Bee Conservation: A Cost-Benefit Analysis(2019-07) Delphia, Casey M.; O'Neill, Kevin M.; Burkle, Laura A.Improving pollinator habitat on farmlands is needed to further wild bee conservation and to sustain crop pollination in light of relationships between global declines in pollinators and reductions in floral resources. One management strategy gaining much attention is the use of wildflower strips planted alongside crops to provide supplemental floral resources for pollinators. However, farmer adoption of pollinator-friendly strategies has been minimal, likely due to uncertainty about costs and benefits of providing non-crop flowering plants for bees. Over 3 yr, on four diversified farms in Montana, United States, we estimated the potential economic profit of harvesting and selling wildflower seeds collected from flower strips implemented for wild bee conservation, as an incentive for farmers to adopt this management practice. We compared the potential profitability of selling small retail seed packets versus bulk wholesale seed. Our economic analyses indicated that potential revenue from retail seed sales exceeded the costs associated with establishing and maintaining wildflower strips after the second growing season. A wholesale approach, in contrast, resulted in considerable net economic losses. We provide proof-of-concept that, under retail scenarios, the sale of native wildflower seeds may provide an alternative economic benefit that, to our knowledge, remains unexplored. The retail seed-sales approach could encourage greater farmer adoption of wildflower strips as a pollinator-conservation strategy in agroecosystems. The approach could also fill a need for regionally produced, native wildflower seed for habitat restoration and landscaping aimed at conserving native plants and pollinators.