Plant Sciences & Plant Pathology
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/12
The Department of Plant Sciences and Plant Pathology is part of the College of Agriculture at Montana State University in Bozeman. An exciting feature of this department is the diversity of programs in Plant Biology, Crop Science, Plant Pathology, Horticulture, Mycology, Plant Genetics and Entomology. The department offers BS, MS, and Ph.D. degree program
Browse
3 results
Search Results
Item Melanoma and Lymphocyte Cell Specific Targeting Incorporated into a Heat Shock Protein Cage Architecture(2006) Flenniken, Michelle L.; Willits, Deborah A.; Harmsen, Ann L.; Liepold, Lars O.; Harmsen, Allen G.; Young, Mark J.; Douglas, TrevorProtein cages, including viral capsids, ferritins, and heat shock proteins (Hsps), can serve as nanocontainers for biomedical applications. They are genetically and chemically malleable platforms, with potential as therapeutic and imaging agent delivery systems. Here, both genetic and chemical strategies were used to impart cell-specific targeting to the Hsp cage from Methanococcus jannaschii. A tumor vasculature targeting peptide was incorporated onto the exterior surface of the Hsp cage. This protein cage bound to αvβ3 integrin-expressing cells. Cellular tropism was also imparted by conjugating anti-CD4 antibodies to the exterior of Hsp cages. These Ab-Hsp cage conjugates specifically bound to CD4+ cells. Protein cages have the potential to simultaneously incorporate multiple functionalities, including cell-specific targeting, imaging, and therapeutic agent delivery. We demonstrate the simultaneous incorporation of two functionalities, imaging and cell-specific targeting, onto the Hsp protein cage.Item Microbe manufacturers of semiconductors(2004-11) Flenniken, Michelle L.; Allen, Mark; Douglas, TrevorSynthesis of cadmium sulfide (CdS) semiconductor nanoparticles within a prokaryotic organism is reported for the first time by Sweeney et al. [1]. This paper demonstrates the utility of microorganisms to perform chemistries outside the scope of their “normal” metabolism and offers an environmentally benign synthesis of CdS nanoparticles.Item Biodistribution studies of protein cage nanoparticles demonstrate broad tissue distribution and rapid clearance in vivo(2007-12) Kaiser, Coleen R.; Flenniken, Michelle L.; Gillitzer, Eric; Harmsen, Ann L.; Harmsen, Allen G.; Jutila, Mark A.; Douglas, Trevor; Young, Mark J.Protein cage nanoparticles have the potential to serve as multifunctional cell targeted, imaging and therapeutic platforms for broad applications in medicine. However, before they find applications in medicine, their biocompatibility in vivo needs to be demonstrated. We provide here baseline biodistribution information of two different spherical protein cage nanoplatforms, the 28 nm viral Cowpea chlorotic mottle virus (CCMV) and the 12 nm heat shock protein (Hsp) cage. In naïve and immunized mice both nanoplatforms show similar broad distribution and movement throughout most tissues and organs, rapid excretion, the absence of long term persistence within mice tissue and organs, and no overt toxicity after a single injection. These results suggest that protein cage based nanoparticles may serve as safe, biocompatible, nanoplatforms for applications in medicine.