Chemical & Biological Engineering

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/29

Chemical & Biological Engineering Our goal is to prepare students to use their knowledge and skills to contribute to society and their profession. We offer undergraduate degrees in both chemical engineering and bioengineering. The basis of both chemical and biological engineering is the useful transformation of matter from one form to another. That transformation can be brought about by direct chemical reactions, or chemical reactions mediated by living organisms. Right now, chemical and biological engineers can work in many of the same areas. That may change as bioengineering develops as a profession, but bioengineers are likely to work closely with chemical engineers for the foreseeable future.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Evaluation of cellulose as a substrate for hydrocarbon fuel production by Ascocoryne sarcoides (NRRL 50072)
    (2014-02) Mallette, Natasha D.; Pankrantz, E. M.; Busse, S.; Strobel, Gary A.; Carlson, Ross P.; Peyton, Brent M.
    The fungal endophyte, Ascocoryne sarcoides, produced aviation, gasoline and diesel-relevant hydrocarbons when grown on multiple substrates including cellulose as the sole carbon source. Substrate, growth stage, culturing pH, temperature and medium composition were statistically significant factors for the type and quantity of hydrocarbons produced. Gasoline range (C5-C12), aviation range (C8-C16) and diesel range (C9-C36) organics were detected in all cultured media. Numerous non-oxygenated hydrocarbons were produced such as isopentane, 3,3-dimethyl hexane and d-limonene during exponential growth phase. Growth on cellulose at 23˚C and pH 5.8 produced the highest overall yield of fuel range organics (105 mg * g·biomass−1). A change in metabolism was seen in late stationary phase from catabolism of cellulose to potential oxidation of hydrocarbons resulting in the production of more oxygenated compounds with longer carbon chain length and fewer fuel-related compounds. The results outline rational strategies for controlling the composition of the fuel-like compounds by changing culturing parameters.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.