Chemical & Biological Engineering

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/29

Chemical & Biological Engineering Our goal is to prepare students to use their knowledge and skills to contribute to society and their profession. We offer undergraduate degrees in both chemical engineering and bioengineering. The basis of both chemical and biological engineering is the useful transformation of matter from one form to another. That transformation can be brought about by direct chemical reactions, or chemical reactions mediated by living organisms. Right now, chemical and biological engineers can work in many of the same areas. That may change as bioengineering develops as a profession, but bioengineers are likely to work closely with chemical engineers for the foreseeable future.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    A 21 000-year record of fluorescent organic matter markers in the WAIS Divide ice core
    (2017-05) D'Andrilli, Juliana; Foreman, Christine M.; Sigl, Michael; Priscu, John C.; McConnell, Joseph R.
    Englacial ice contains a significant reservoir of organic material (OM), preserving a chronological record of materials from Earth's past. Here, we investigate if OM composition surveys in ice core research can provide paleoecological information on the dynamic nature of our Earth through time. Temporal trends in OM composition from the early Holocene extending back to the Last Glacial Maximum (LGM) of the West Antarctic Ice Sheet Divide (WD) ice core were measured by fluorescence spectroscopy. Multivariate parallel factor (PARAFAC) analysis is widely used to isolate the chemical components that best describe the observed variation across three-dimensional fluorescence spectroscopy (excitation–emission matrices; EEMs) assays. Fluorescent OM markers identified by PARAFAC modeling of the EEMs from the LGM (27.0–18.0 kyr BP; before present 1950) through the last deglaciation (LD; 18.0–11.5 kyr BP), to the mid-Holocene (11.5–6.0 kyr BP) provided evidence of different types of fluorescent OM composition and origin in the WD ice core over 21.0 kyr. Low excitation–emission wavelength fluorescent PARAFAC component one (C1), associated with chemical species similar to simple lignin phenols was the greatest contributor throughout the ice core, suggesting a strong signature of terrestrial OM in all climate periods. The component two (C2) OM marker, encompassed distinct variability in the ice core describing chemical species similar to tannin- and phenylalanine-like material. Component three (C3), associated with humic-like terrestrial material further resistant to biodegradation, was only characteristic of the Holocene, suggesting that more complex organic polymers such as lignins or tannins may be an ecological marker of warmer climates. We suggest that fluorescent OM markers observed during the LGM were the result of greater continental dust loading of lignin precursor (monolignol) material in a drier climate, with lower marine influences when sea ice extent was higher and continents had more expansive tundra cover. As the climate warmed, the record of OM markers in the WD ice core changed, reflecting shifts in carbon productivity as a result of global ecosystem response..
  • Thumbnail Image
    Item
    Biofilms on glacial surfaces: hotspots for biological activity
    (2016-06) Smith, Heidi J.; Schmit, Amber; Foster, Rachel A.; Littmann, Sten; Kuypers, Marcel M. M.; Foreman, Christine M.
    Glaciers are important constituents in the Earth’s hydrological and carbon cycles, with predicted warming leading to increases in glacial melt and the transport of nutrients to adjacent and downstream aquatic ecosystems. Microbial activity on glacial surfaces has been linked to the biological darkening of cryoconite particles, affecting albedo and increased melt. This phenomenon, however, has only been demonstrated for alpine glaciers and the Greenland Ice Sheet, excluding Antarctica. In this study, we show via confocal laser scanning microscopy that microbial communities on glacial surfaces in Antarctica persist in biofilms. Overall, ~35% of the cryoconite sediment surfaces were covered by biofilm. Nanoscale scale secondary ion mass spectrometry measured significant enrichment of 13C and 15N above background in both Bacteroidetes and filamentous cyanobacteria (i.e., Oscillatoria) when incubated in the presence of 13C–NaHCO3 and 15NH4. This transfer of newly synthesised organic compounds was dependent on the distance of heterotrophic Bacteroidetes from filamentous Oscillatoria. We conclude that the spatial organisation within these biofilms promotes efficient transfer and cycling of nutrients. Further, these results support the hypothesis that biofilm formation leads to the accumulation of organic matter on cryoconite minerals, which could influence the surface albedo of glaciers.
  • Thumbnail Image
    Item
    Darcy-scale modeling of microbially induced carbonate mineral precipitation in sand columns
    (2012-07) Ebigbo, Anozie; Phillips, Adrienne J.; Gerlach, Robin; Helmig, Rainer; Cunningham, Alfred B.; Class, Holger; Spangler, Lee H.
    This investigation focuses on the use of microbially induced calcium carbonate precipitation (MICP) to set up subsurface hydraulic barriers to potentially increase storage security near wellbores of CO2 storage sites. A numerical model is developed, capable of accounting for carbonate precipitation due to ureolytic bacterial activity as well as the flow of two fluid phases in the subsurface. The model is compared to experiments involving saturated flow through sand-packed columns to understand and optimize the processes involved as well as to validate the numerical model. It is then used to predict the effect of dense-phase CO2 and CO2-saturated water on carbonate precipitates in a porous medium.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.