Civil Engineering
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/30
The Department of Civil Engineering has strong affiliation with the Western Transportation Institute (WTI) and the Center for Biofilm Engineering (CBE), a graduated NSF research center. The department is also affiliated with a Montana Department of Transportation Design Unit located on the MSU campus.
Browse
Item Pharmaceutical impacts on aerobic granular sludge morphology and potential implications for abiotic removal(Elsevier, 2024-02) Bodle, Kylie B.; Kirkland, Catherine M.The goal of this study was to investigate abiotic pharmaceutical removal and abiotic pharmaceutical effects on aerobic granular sludge morphology. For 80 days, a pharmaceutical mixture containing approximately 150 μg/L each of diclofenac, erythromycin, and gemfibrozil was fed to an aerobic granular sludge sequencing batch reactor and granule characteristics were compared with those from a control reactor. Aqueous and solid phase pharmaceutical concentrations were monitored and staining was used to assess changes in biofilm structures. Solid phase pharmaceutical concentrations were elevated over the first 12 days of dosing; however, they then dropped, indicative of desorption. The lipid content in pharmaceutical-exposed granules declined by approximately half over the dosing period, though the relative concentrations of other key biofilm components (proteins, alpha-, and beta-polysaccharides) did not change. Batch experiments were conducted to try to find an explanation for the desorption observed, but reduced solid phase pharmaceutical concentrations could not be linked with the presence of common wastewater constituents such as ammonia or phosphate. Sorption of all three compounds was modeled best by the Henry isotherm, indicating that, even at 150 μg/L, granules’ sorption site coverage was incomplete. Altogether, this study demonstrates that simplified batch systems may not accurately represent the complex abiotic processes occurring in flow-through, biotic systems.Item Pharmaceutical Sorption to Lab Materials May Overestimate Rates of Removal in Lab-Scale Bioreactors(Springer Science and Business Media LLC, 2022-11) Bodle, Kylie B.; Pernat, Madeline R.; Kirkland, Catherine M.Environmental contamination from pharmaceuticals has received increased attention from researchers in the past 20 years. As such, numerous lab-scale studies have sought to characterize the effects of these contaminants on various targets, as well as determine improved removal methods. Many studies have used lab-scale bioreactors to investigate pharmaceutical effects on wastewater bacteria, as wastewater treatment plants often act as reservoirs for pharmaceuticals. However, few—if any—of these studies report the specific lab materials used during testing, such as tubing or pipette tip type. In this study, the pharmaceuticals erythromycin, diclofenac, and gemfibrozil were exposed to different micropipette tips, syringe filters, and tubing types, and losses over time were evaluated. Losses to tubing and syringe filters were particularly significant and neared 100%, depending on the pharmaceutical compound and length of exposure time. Results discussed herein indicate that pharmaceutical sorption to various lab supplies results in decreases to both dosed and quantified pharmaceutical concentrations. Studies that fail to consider this source of loss may therefore draw inaccurate conclusions about pharmaceutical effects or removal efficiencies.