Small scale stimuli and the cricket cercal system
Date
2022
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Montana State University - Bozeman, College of Agriculture
Abstract
The cricket cercal system has been a model system in neuroscience for over 30 years. Anatomy, physiology, and theory have all come together to produce a picture of a system with a clear purpose: encoding air direction around the animal. However, certain features of the system have suggested that these cells may be sensitive to additional stimulus dimensions. To address this limited stimulus space I designed new experiments to test these neurons' responses to previously untested stimuli. I used a novel extracellular recording mechanism able to record and sort several neurons' responses at the same time. I built and tested several stimulators to provide small-scale puffs to specific parts of the sensory array at specific times. With these, I was able to test this model neural system against a complex stimulus space. I show here that these neurons respond to several additional stimulus dimensions. They are tuned to the timing of stimuli across the array. They show differential responses to even more complex stimuli with varying stimulus directions in different locations across the array. This implies that the previous understanding of the system was likely limited by how it was tested. While these cells accurately encode the direction of large-scale airflow, they also encode other aspects of stimuli, such stimulus timing and small-scale variations in stimulus direction. Thus the "function" of these neurons may be far more complex than previously understood.