Multi-environment evaluation of winter pea genotypes for winter survival and yield stability

Thumbnail Image

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Montana State University - Bozeman, College of Agriculture

Abstract

Winter pea can be grown as a rotational crop for soil moisture conservation and nutrient recycling in the wheat-growing region of Montana. Development of winter hardy cultivars would increase seed yield and expand the area of adaptation of this crop. Harsh winter conditions present a significant challenge to the production of winter peas. The objective of this study was to screen pea germplasm and breeding lines for winter survival and identify genotypes with good winter hardiness for future crop production. Field trials were conducted to evaluate genotypes at Bozeman, Havre, Huntley, and Moccasin, MT in 2021, 2022, and 2023. These lines included elite winter cultivars and several checks. Winter hardiness was evaluated as the percentage of surviving plants and by agronomic performance including yield. Genotypes were evaluated based on the GGE biplot method. This analysis captured multiple variables including yield, protein content, seed size, and their overall stability across multiple years and locations of study to aid in selecting lines. Differential winter survival was observed across locations and years. Higher winter survival was seen in Bozeman and Havre. Few lines were identified as having high seed yield and stable production over years and locations. Breeding lines had higher mean yield with few good lines having stable production of greater than 2500 kg/ha. Germplasm lines showed better winter survival than breeding lines. Protein content ranged from 20% to 31%. Larger seeds were observed in Moccasin, whereas Havre had the highest protein content. Mega- environment differentiation helped to select specific genotypes based on the trait of interest for a particular environment. Several European and US lines used in the experiments having high winter hardiness record performed better for seed yield and resistance to stress. The lines identified as having high levels of cold tolerance can be used as a prospective genetic resource in pea breeding programs. Genotypes having high and stable seed yield can be considered for release as a variety and made available to producers.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By

Copyright (c) 2002-2022, LYRASIS. All rights reserved.