Mechanobiological implications of articular cartilage crystals
Date
2017-03
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
PURPOSE OF REVIEW: Calcium crystals exist in both pathological and normal articular cartilage. The prevalence of these crystals dramatically increases with age, and crystals are typically found in osteoarthritic cartilage and synovial fluid. Relatively few studies have examined the effects of crystals on cartilage biomechanics or chondrocyte mechanotransduction. The purpose of this review is to describe how crystals could influence cartilage biomechanics and mechanotransduction in osteoarthritis.
RECENT FINDINGS: Crystals are found in both loaded and unloaded regions of articular cartilage. Exogenous crystals, in combination with joint motion, result in substantial joint inflammation. Articular cartilage vesicles promote crystal formation, and these vesicles are found near the periphery of chondrocytes. Crystallographic studies report monoclinic symmetry for synthetic crystals, suggesting that crystals will have a large stiffness compared with the cartilage extracellular matrix, the pericellular matrix, or the chondrocyte. This stiffness imbalance may cause crystal-induced dysregulation of chondrocyte mechanotransduction promoting both aging and osteoarthritis chondrocyte phenotypes.
SUMMARY: Because of their high stiffness compared with cartilage matrix, crystals likely alter chondrocyte mechanotransduction, and high concentrations of crystals within cartilage may alter macroscale biomechanics. Future studies should focus on understanding the mechanical properties of joint crystals and developing methods to understand how crystals affect chondrocyte mechanotransduction.
Description
Keywords
Citation
Carlson, Alyssa K., Carley N. McCutchen, and Ronald K. June. "Mechanobiological implications of articular cartilage crystals." Current Opinion in Rheumatology 29, no. 2 (March 2017): 157-162. DOI: 10.1097/BOR.0000000000000368.
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).