An efficient and scalable extraction and quantification method for algal derived biofuel

dc.contributor.authorLohman, Egan J.
dc.contributor.authorGardner, Robert D.
dc.contributor.authorHalverson, L.
dc.contributor.authorMacur, Richard E.
dc.contributor.authorPeyton, Brent M.
dc.contributor.authorGerlach, Robin
dc.date.accessioned2017-01-27T22:45:45Z
dc.date.available2017-01-27T22:45:45Z
dc.date.issued2013-09
dc.description.abstractMicroalgae are capable of synthesizing a multitude of compounds including biofuel precursors and other high value products such as omega-3-fatty acids. However, accurate analysis of the specific compounds produced by microalgae is important since slight variations in saturation and carbon chain length can affect the quality, and thus the value, of the end product. We present a method that allows for fast and reliable extraction of lipids and similar compounds from a range of algae, followed by their characterization using gas chromatographic analysis with a focus on biodiesel-relevant compounds. This method determines which range of biologically synthesized compounds is likely responsible for each fatty acid methyl ester (FAME) produced; information that is fundamental for identifying preferred microalgae candidates as a biodiesel source. Traditional methods of analyzing these precursor molecules are time intensive and prone to high degrees of variation between species and experimental conditions. Here we detail a new method which uses microwave energy as a reliable, single-step cell disruption technique to extract lipids fromlive cultures of microalgae. After extractable lipid characterization (including lipid type (free fatty acids, mono-, di- or tri-acylglycerides) and carbon chain length determination) by GC–FID, the same lipid extracts are transesterified into FAMEs and directly compared to total biodiesel potential by GC–MS. This approach provides insight into the fraction of total FAMEs derived from extractable lipids compared to FAMEs derived fromthe residual fraction (i.e. membrane bound phospholipids, sterols, etc.). This approach can also indicate which extractable lipid compound, based on chain length and relative abundance, is responsible for each FAME. This method was tested on three species of microalgae: the marine diatom Phaeodactylum tricornutum, the model Chlorophyte Chlamydomonas reinhardtii, and the freshwater green alga Chlorella vulgaris. The method is shown to be robust, highly reproducible, and fast, allowing for multiple samples to be analyzed throughout the time course of culturing, thus providing time-resolved information regarding lipid quantity and quality. Total time from harvesting to obtaining analytical results is less than 2 h.en_US
dc.identifier.citationLohman EJ, Gardner RD, Halverson L, Macur RE, Peyton BM, Gerlach R, "An efficient and scalable extraction and quantification method for algal derived biofuel," Journal of Microbiological Methods, September 2013 94(3): 235–244.en_US
dc.identifier.issn0167-7012
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/12459
dc.titleAn efficient and scalable extraction and quantification method for algal derived biofuelen_US
dc.typeArticleen_US
mus.citation.extentfirstpage235en_US
mus.citation.extentlastpage244en_US
mus.citation.issue3en_US
mus.citation.journaltitleJournal of Microbiological Methodsen_US
mus.citation.volume94en_US
mus.contributor.orcidPeyton, Brent M.|0000-0003-0033-0651en_US
mus.data.thumbpage9en_US
mus.identifier.categoryChemical & Material Sciencesen_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.categoryLife Sciences & Earth Sciencesen_US
mus.identifier.doi10.1016/j.mimet.2013.06.007en_US
mus.relation.collegeCollege of Agricultureen_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentEcology.en_US
mus.relation.departmentEnvironmental Engineering.en_US
mus.relation.departmentMicrobiology & Immunology.en_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
13-025_An_efficient_and__A1b.pdf
Size:
949.05 KB
Format:
Adobe Portable Document Format
Description:
An efficient and scalable extraction and quantification method for algal derived biofuel (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.