Elongator and codon bias regulate protein levels in mammalian peripheral neurons
dc.contributor.author | Goffena, Joy | |
dc.contributor.author | Lefcort, Frances | |
dc.contributor.author | Zhang, Yongqing | |
dc.contributor.author | Lehrmann, Elin | |
dc.contributor.author | Chaverra, Marta | |
dc.contributor.author | Felig, Jehremy | |
dc.contributor.author | Walters, Joseph | |
dc.contributor.author | Buksch, Richard | |
dc.contributor.author | Becker, Kevin G. | |
dc.contributor.author | George, Lynn | |
dc.date.accessioned | 2018-11-01T15:56:09Z | |
dc.date.available | 2018-11-01T15:56:09Z | |
dc.date.issued | 2018-03 | |
dc.description.abstract | Familial dysautonomia (FD) results from mutation in IKBKAP/ELP1, a gene encoding the scaffolding protein for the Elongator complex. This highly conserved complex is required for the translation of codon-biased genes in lower organisms. Here we investigate whether Elongator serves a similar function in mammalian peripheral neurons, the population devastated in FD. Using codon-biased eGFP sensors, and multiplexing of codon usage with transcriptome and proteome analyses of over 6,000 genes, we identify two categories of genes, as well as specific gene identities that depend on Elongator for normal expression. Moreover, we show that multiple genes in the DNA damage repair pathway are codon-biased, and that with Elongator loss, their misregulation is correlated with elevated levels of DNA damage. These findings link Elongator's function in the translation of codon-biased genes with both the developmental and neurodegenerative phenotypes of FD, and also clarify the increased risk of cancer associated with the disease. | en_US |
dc.description.sponsorship | National Institutes of Health (NIH), R15NS090384; National Institute of General Medical Sciences of the NIH, P20GM103474; Intramural Research Program of the NIH, National Institute on Aging; NIH R01NS086796 | en_US |
dc.identifier.citation | Goffena, Joy, Frances Lefcort, Yongqing Zhang, Elin Lehrmann, Marta Chaverra, Jehremy Felig, Joseph Walters, Richard Buksch, Kevin G Becker, and Lynn George. "Elongator and codon bias regulate protein levels in mammalian peripheral neurons." Nature Communications 9 (March 2018): 1-10. DOI:10.1038/s41467-018-03221-z. | en_US |
dc.identifier.issn | 2041-1723 | |
dc.identifier.uri | https://scholarworks.montana.edu/handle/1/14989 | |
dc.language.iso | en | en_US |
dc.rights | CC BY 4.0, This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit you for the original creation. This is the most accommodating of licenses offered. Recommended for maximum dissemination and use of licensed materials. | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/legalcode | en_US |
dc.title | Elongator and codon bias regulate protein levels in mammalian peripheral neurons | en_US |
dc.type | Article | en_US |
mus.citation.extentfirstpage | 1 | en_US |
mus.citation.extentlastpage | 10 | en_US |
mus.citation.journaltitle | Nature Communications | en_US |
mus.citation.volume | 9 | en_US |
mus.data.thumbpage | 5 | en_US |
mus.identifier.category | Health & Medical Sciences | en_US |
mus.identifier.doi | 10.1038/s41467-018-03221-z | en_US |
mus.relation.college | College of Agriculture | en_US |
mus.relation.department | Microbiology & Cell Biology. | en_US |
mus.relation.university | Montana State University - Bozeman | en_US |
Files
Original bundle
1 - 1 of 1
- Name:
- George_NC_2018.pdf
- Size:
- 1.61 MB
- Format:
- Adobe Portable Document Format
- Description:
- Elongator and codon bias regulate protein levels in mammalian peripheral neurons (PDF)
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 826 B
- Format:
- Item-specific license agreed upon to submission
- Description: