Homologous acetone carboxylases select Fe(II) or Mn(II) as the catalytic cofactor

Abstract

Acetone carboxylases (ACs) catalyze the metal- and ATP-dependent conversion of acetone and bicarbonate to form acetoacetate. Interestingly, two homologous ACs that have been biochemically characterized have been reported to have different metal complements, implicating different metal dependencies in catalysis. ACs from proteobacteria Xanthobacter autotrophicus and Aromatoleum aromaticum share 68% sequence identity but have been proposed to have different catalytic metals. In this work, the two ACs were expressed under the same conditions in Escherichia coli and were subjected to parallel chelation and reconstitution experiments with Mn(II) or Fe(II). Electron paramagnetic and Mössbauer spectroscopies identified signatures, respectively, of Mn(II) or Fe(II) bound at the active site. These experiments showed that the respective ACs, without the assistance of chaperones, second metal sites, or post-translational modifications facilitate correct metal incorporation, and despite the expected thermodynamic preference for Fe(II), each preferred a distinct metal. Catalysis was likewise associated uniquely with the cognate metal, though either could potentially serve the proposed Lewis acidic role. Subtle differences in the protein structure are implicated in serving as a selectivity filter for Mn(II) or Fe(II).

Description

Citation

Shisler KA, Kincannon WM, Mattice JR, Larson J, Valaydon-Pillay A, Mus F, Flusche T, Kumar Nath A, Stoian SA, Raugei S, Bothner B, DuBois JL, Peters JW.2024.Homologous acetone carboxylases select Fe(II) or Mn(II) as the catalytic cofactor. mBio15:e02987-23.https://doi.org/10.1128/mbio.02987-23

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as cc-by