Antimicrobial penetration and efficacy in an in vitro oral biofilm model
dc.contributor.author | Corbin, A. | |
dc.contributor.author | Pitts, Betsey | |
dc.contributor.author | Parker, Albert E. | |
dc.contributor.author | Stewart, Philip S. | |
dc.date.accessioned | 2017-02-07T18:32:42Z | |
dc.date.available | 2017-02-07T18:32:42Z | |
dc.date.issued | 2011-05 | |
dc.description.abstract | The penetration and overall efficacy of six mouthrinse actives was evaluated by using an in vitro flow cell oral biofilm model. The technique involved preloading biofilm cells with a green fluorescent dye that leaked out as the cells were permeabilized by a treatment. The loss of green color, and of biomass, was observed by time-lapse microscopy during 60 min of treatment under continuous flow conditions. The six actives analyzed were ethanol, sodium lauryl sulfate, triclosan, chlorhexidine digluconate (CHX), cetylpyridinium chloride, and nisin. Each of these agents effected loss of green fluorescence throughout biofilm cell clusters, with faster action at the edge of a cell cluster and slower action in the cluster center. The time to reach half of the initial fluorescent intensity at the center of a cell cluster, which can be viewed as a combined penetration and biological action time, ranged from 0.6 to 19 min for the various agents. These times are much longer than the predicted penetration time based on diffusion alone, suggesting that anti-biofilm action was controlled more by the biological action time than by the penetration time of the active. None of the agents tested caused any removal of the biofilm. The extent of fluorescence loss after 1 h of exposure to an active ranged from 87 to 99.5%, with CHX being the most effective. The extent of fluorescence loss in vitro, but not penetration and action time, correlated well with the relative efficacy data from published clinical trials. | en_US |
dc.identifier.citation | Corbin A, Pitts B, Parker A, Stewart PS, "Antimicrobial penetration and efficacy in an in vitro oral biofilm model," Antimicrobial Agents and Chemotherapy 2011 55(7):3338–3344 | en_US |
dc.identifier.issn | 0066-4804 | |
dc.identifier.uri | https://scholarworks.montana.edu/handle/1/12580 | |
dc.title | Antimicrobial penetration and efficacy in an in vitro oral biofilm model | en_US |
dc.type | Article | en_US |
mus.citation.extentfirstpage | 3338 | en_US |
mus.citation.extentlastpage | 3344 | en_US |
mus.citation.issue | 7 | en_US |
mus.citation.journaltitle | Antimicrobial Agents and Chemotherapy | en_US |
mus.citation.volume | 55 | en_US |
mus.contributor.orcid | Stewart, Philip S.|0000-0001-7773-8570 | en_US |
mus.data.thumbpage | 3 | en_US |
mus.identifier.category | Chemical & Material Sciences | en_US |
mus.identifier.category | Engineering & Computer Science | en_US |
mus.identifier.category | Health & Medical Sciences | en_US |
mus.identifier.category | Life Sciences & Earth Sciences | en_US |
mus.identifier.doi | 10.1128/aac.00206-11 | en_US |
mus.relation.college | College of Agriculture | en_US |
mus.relation.college | College of Education, Health & Human Development | en_US |
mus.relation.college | College of Engineering | en_US |
mus.relation.college | College of Letters & Science | en_US |
mus.relation.department | Center for Biofilm Engineering. | en_US |
mus.relation.department | Chemical & Biological Engineering. | en_US |
mus.relation.department | Chemical Engineering. | en_US |
mus.relation.department | Chemistry & Biochemistry. | en_US |
mus.relation.department | Health & Human Development. | en_US |
mus.relation.department | Microbiology & Immunology. | en_US |
mus.relation.researchgroup | Center for Biofilm Engineering. | en_US |
mus.relation.university | Montana State University - Bozeman | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 11-029_Antimicrobial_penetration_and_.pdf
- Size:
- 800.23 KB
- Format:
- Adobe Portable Document Format
- Description:
- Antimicrobial penetration and efficacy in an in vitro oral biofilm model (PDF)
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 826 B
- Format:
- Item-specific license agreed upon to submission
- Description: