Micro-patterned surfaces reduce bacterial colonization and biofilm formation in vitro: Potential for enhancing endotracheal tube designs

dc.contributor.authorMay, Rhea M.
dc.contributor.authorHoffman, Matt G.
dc.contributor.authorSogo, M.
dc.contributor.authorParker, Albert E.
dc.contributor.authorO'Toole, George A.
dc.contributor.authorBrennan, Anthony B.
dc.contributor.authorReddy, Shravanthi T.
dc.date.accessioned2016-12-05T23:07:31Z
dc.date.available2016-12-05T23:07:31Z
dc.date.issued2014-04
dc.description.abstractVentilator-associated pneumonia (VAP) is a leading hospital acquired infection in intensive care units despite improved patient care practices and advancements in endotracheal tube (ETT) designs. The ETT provides a conduit for bacterial access to the lower respiratory tract and a substratum for biofilm formation, both of which lead to VAP. A novel microscopic ordered surface topography, the Sharklet micro-pattern, has been shown to decrease surface attachment of numerous microorganisms, and may provide an alternative strategy for VAP prevention if included on the surface of an ETT. To evaluate the feasibility of this micro-pattern for this application, the microbial range of performance was investigated in addition to biofilm studies with and without a mucin-rich medium to simulate the tracheal environment in vitro.en_US
dc.description.sponsorshipNIH/NHLBI Phase I SBIR funding (1R43HL110444-01); NIH grant (R01AI083256); NIH/NCRR Colorado CTSI (UL1 RR025780)en_US
dc.identifier.citationMay R, Hoffman M, Sogo M, Parker A, O'Toole G, Brennan A, Reddy S, "Micro-patterned surfaces reduce bacterial colonization and biofilm formation in vitro: Potential for enhancing endotracheal tube designs," Clinical and Translational Medicine April 2014 3:8en_US
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/12324
dc.rightsCC BY 2.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by/2.0/legalcodeen_US
dc.titleMicro-patterned surfaces reduce bacterial colonization and biofilm formation in vitro: Potential for enhancing endotracheal tube designsen_US
dc.typeArticleen_US
mus.citation.extentfirstpage1en_US
mus.citation.extentlastpage9en_US
mus.citation.issue1en_US
mus.citation.journaltitleClinical and Translational Medicine April 2014 3:8en_US
mus.citation.volume3en_US
mus.data.thumbpage5en_US
mus.identifier.categoryChemical & Material Sciencesen_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.categoryLife Sciences & Earth Sciencesen_US
mus.identifier.doi10.1186/2001-1326-3-8en_US
mus.relation.collegeCollege of Agricultureen_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentChemistry & Biochemistry.en_US
mus.relation.departmentMicrobiology & Immunology.en_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
14-010_Micro-patterned_surfaces_.pdf
Size:
1.76 MB
Format:
Adobe Portable Document Format
Description:
Micro-patterned surfaces reduce bacterial colonization and biofilm formation in vitro: Potential for enhancing endotracheal tube designs (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.