Prominent Structural Dependence of Quantum Capacitance Unraveled by Nitrogen‐Doped Graphene Mesosponge

dc.contributor.authorTang, Rui
dc.contributor.authorAziz, Alex
dc.contributor.authorYu, Wei
dc.contributor.authorPan, Zheng‐Ze
dc.contributor.authorNishikawa, Ginga
dc.contributor.authorYoshii, Takeharu
dc.contributor.authorNomura, Keita
dc.contributor.authorTaylor, Erin E.
dc.contributor.authorStadie, Nicholas P.
dc.contributor.authorInoue, Kazutoshi
dc.contributor.authorKotani, Motoko
dc.contributor.authorKyotani, Takashi
dc.contributor.authorNishihara, Hirotomo
dc.date.accessioned2024-03-01T22:31:07Z
dc.date.available2024-03-01T22:31:07Z
dc.date.issued2023-12
dc.description.abstractPorous carbons are important electrode materials for supercapacitors. One of the challenges associated with supercapacitors is improving their energy density without relying on pseudocapacitance, which is based on fast redox reactions that often shorten device lifetimes. A possible solution involves achieving high total capacitance (Ctot), which comprises Helmholtz capacitance (CH) and possibly quantum capacitance (CQ), in high-surface carbon materials comprising minimally stacked graphene walls. In this work, a templating method is used to synthesize 3D mesoporous graphenes with largely identical pore structures (≈2100 m2 g−1 with an average pore size of ≈7 nm) but different concentrations of oxygen-containing functional groups (0.3–6.7 wt.%) and nitrogen dopants (0.1–4.5 wt.%). Thus, the impact of the heteroatom functionalities on Ctot is systematically investigated in an organic electrolyte excluding the effect of pore structures. It is found that heteroatom functionalities determine Ctot, resulting in the cyclic voltammetry curves being rectangular or butterfly-shaped. The nitrogen functionalities are found to significantly enhance Ctot owing to increased CQ.en_US
dc.identifier.citationTang, Rui, Alex Aziz, Wei Yu, Zheng‐Ze Pan, Ginga Nishikawa, Takeharu Yoshii, Keita Nomura et al. "Prominent Structural Dependence of Quantum Capacitance Unraveled by Nitrogen‐Doped Graphene Mesosponge." Small (2023): 2308066.en_US
dc.identifier.issn1613-6810
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/18345
dc.language.isoen_USen_US
dc.publisherWileyen_US
dc.rightscc-by-ncen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en_US
dc.subjectstructural depndenceen_US
dc.subjectquantum capacitanceen_US
dc.subjectnitrogen-doped grapheneen_US
dc.subjectGraphene Mesospongeen_US
dc.subjectMesospongeen_US
dc.titleProminent Structural Dependence of Quantum Capacitance Unraveled by Nitrogen‐Doped Graphene Mesospongeen_US
dc.typeArticleen_US
mus.citation.extentfirstpage1en_US
mus.citation.extentlastpage10en_US
mus.citation.journaltitleSmallen_US
mus.data.thumbpage3en_US
mus.identifier.doi10.1002/smll.202308066en_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentChemistry & Biochemistry.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
tang-nitrogen-2023.pdf
Size:
2.23 MB
Format:
Adobe Portable Document Format
Description:
nitrogen-dope graphene mesosponge

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.