Efficacy and Safety of Immuno-Magnetically Sorted Smooth Muscle Progenitor Cells Derived from Human-Induced Pluripotent Stem Cells for Restoring Urethral Sphincter Function

dc.contributor.authorLi, Yanhui
dc.contributor.authorGreen, Morgaine
dc.contributor.authorWen, Yan
dc.contributor.authorWei, Yi
dc.contributor.authorWani, Prachi
dc.contributor.authorWang, Zhe
dc.contributor.authorReijo Pera, Renee A.
dc.contributor.authorChen, Bertha
dc.date.accessioned2019-12-05T19:01:44Z
dc.date.available2019-12-05T19:01:44Z
dc.date.issued2017-04
dc.description.abstractHuman-induced pluripotent stem cells (hiPSCs)-based cell therapy holds promise for treating stress urinary incontinence (SUI). However, safety concerns, especially tumorgenic potential of residual undifferentiated cells in hiPSC derivatives, are major barriers for its clinical translation. An efficient, fast and clinical-scale strategy for purifying committed cells is also required. Our previous studies demonstrated the regenerative effects of hiPSC-derived smooth muscle progenitor cells (pSMCs) on the injured urethral sphincter in SUI, but the differentiation protocol required fluorescence-activated cell sorting (FACS) which is not practical for autologous clinical applications. In this study, we examined the efficacy and safety of hiPSC-derived pSMC populations sorted by FDA-approved magnetic-activated cell sorting (MACS) using cell-surface marker CD34 for restoring urethral sphincter function. Although the heterogeneity of MACS-sorted pSMCs was higher than that of FACS-sorted pSMCs, the percentage of undifferentiated cells dramatically decreased after directed differentiation in vitro. In vivo studies demonstrated long-term cell integration and no tumor formation of MACS-sorted pSMCs after transplantation. Furthermore, transplantation of MACS-sorted pSMCs into immunodeficient SUI rats was comparable to transplantation with FACS-sorted pSMCs for restoration of the extracellular matrix metabolism and function of the urethral sphincter. In summary, purification of hiPSC derivatives using MACS sorting for CD34 expression represent an efficient approach for production of clinical-scale pSMCs for autologous stem cell therapy for regeneration of smooth muscle tissues.en_US
dc.identifier.citationLi, Yanhui , Morgaine Green, Yan Wen, Yi Wei, Prachi Wani, Zhe Wang, Renee Reijo Pera, and Bertha Chen. "Efficacy and Safety of Immuno-Magnetically Sorted Smooth Muscle Progenitor Cells Derived from Human-Induced Pluripotent Stem Cells for Restoring Urethral Sphincter Function." Stem Cells Translational Medicine6 , no. 4(February 2017): 1158-1167. DOI:10.1002/sctm.16-0160.en_US
dc.identifier.issn2161-1025
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/15798
dc.rightsCC BY-NC-ND: This license is the most restrictive of our six main licenses, only allowing you to download this work and share it with others as long as you credit the original creator, but you can’t change the work in any way or use it commercially.en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/legalcodeen_US
dc.titleEfficacy and Safety of Immuno-Magnetically Sorted Smooth Muscle Progenitor Cells Derived from Human-Induced Pluripotent Stem Cells for Restoring Urethral Sphincter Functionen_US
dc.typeArticleen_US
mus.citation.extentfirstpage1158en_US
mus.citation.extentlastpage1167en_US
mus.citation.issue4en_US
mus.citation.journaltitleStem Cells Translational Medicineen_US
mus.citation.volume6en_US
mus.data.thumbpage7en_US
mus.identifier.doi10.1002/sctm.16-0160en_US
mus.relation.collegeCollege of Agricultureen_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentMicrobiology & Immunology.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
ReijoPera_SCTM_2017_FINAL.pdf
Size:
658.59 KB
Format:
Adobe Portable Document Format
Description:
Efficacy and Safety of Immuno-Magnetically Sorted Smooth Muscle Progenitor Cells Derived from Human-Induced Pluripotent Stem Cells for Restoring Urethral Sphincter Function (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.