Performance of a Genetic Algorithm for Estimating DeGroot Opinion Diffusion Model Parameters for Health Behavior Interventions

dc.contributor.authorJohnson, Kara Layne
dc.contributor.authorWalsh, Jennifer L.
dc.contributor.authorAmirkhanian, Yuri A.
dc.contributor.authorCarnegie, Nicole Bohme
dc.date.accessioned2022-09-30T15:58:23Z
dc.date.available2022-09-30T15:58:23Z
dc.date.issued2021-12
dc.description.abstractLeveraging social influence is an increasingly common strategy to change population behavior or acceptance of public health policies and interventions; however, assessing the effectiveness of these social network interventions and projecting their performance at scale requires modeling of the opinion diffusion process. We previously developed a genetic algorithm to fit the DeGroot opinion diffusion model in settings with small social networks and limited follow-up of opinion change. Here, we present an assessment of the algorithm performance under the less-than-ideal conditions likely to arise in practical applications. We perform a simulation study to assess the performance of the algorithm in the presence of ordinal (rather than continuous) opinion measurements, network sampling, and model misspecification. We found that the method handles alternate models well, performance depends on the precision of the ordinal scale, and sampling the full network is not necessary to use this method. We also apply insights from the simulation study to investigate notable features of opinion diffusion models for a social network intervention to increase uptake of pre-exposure prophylaxis (PrEP) among Black men who have sex with men (BMSM).en_US
dc.identifier.citationJohnson, K.L.; Walsh, J.L.; Amirkhanian, Y.A.; Carnegie, N.B. Performance of a Genetic Algorithm for Estimating DeGroot Opinion Diffusion Model Parameters for Health Behavior Interventions. Int. J. Environ. Res. Public Health 2021, 18, 13394. https://doi.org/10.3390/ ijerph182413394en_US
dc.identifier.issn1660-4601
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/17261
dc.language.isoen_USen_US
dc.publisherMDPI AGen_US
dc.rightscc-byen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.subjectDeGroot modelen_US
dc.subjectopinion diffusionen_US
dc.subjectocial influenceen_US
dc.subjectgenetic algorithmen_US
dc.subjectparameter estimationen_US
dc.subjectsocial network interventionen_US
dc.subjectpre-exposure prophylaxisen_US
dc.titlePerformance of a Genetic Algorithm for Estimating DeGroot Opinion Diffusion Model Parameters for Health Behavior Interventionsen_US
dc.typeArticleen_US
mus.citation.extentfirstpage1en_US
mus.citation.extentlastpage22en_US
mus.citation.issue24en_US
mus.citation.journaltitleInternational Journal of Environmental Research and Public Healthen_US
mus.citation.volume18en_US
mus.identifier.doi10.3390/ijerph182413394en_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentMathematical Sciences.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
johnson-genetic-2021.pdf
Size:
758.12 KB
Format:
Adobe Portable Document Format
Description:
genetic algorithm

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.