Proteomic and biochemical assays of glutathione-related proteins in susceptible and multiple herbicide resistant Avena fatua L.

dc.contributor.authorBurns, Erin E.
dc.contributor.authorKeith, Barbara K.
dc.contributor.authorRefai, Mohammed Y.
dc.contributor.authorBothner, Brian
dc.contributor.authorDyer, William E.
dc.date.accessioned2017-10-16T14:24:51Z
dc.date.available2017-10-16T14:24:51Z
dc.date.issued2017-06
dc.description.abstractExtensive herbicide usage has led to the evolution of resistant weed populations that cause substantial crop yield losses and increase production costs. The multiple herbicide resistant (MHR) Avena fatua L. populations utilized in this study are resistant to members of all selective herbicide families, across five modes of action, available for A. fatua control in U.S. small grain production, and thus pose significant agronomic and economic threats. Resistance to ALS and ACCase inhibitors is not conferred by target site mutations, indicating that non-target site resistance mechanisms are involved. To investigate the potential involvement of glutathione-related enzymes in the MHR phenotype, we used a combination of proteomic, biochemical, and immunological approaches to compare their constitutive activities in herbicide susceptible (HS1 and HS2) and MHR (MHR3 and MHR4) A. fatua plants. Proteomic analysis identified three tau and one phi glutathione S-transferases (GSTs) present at higher levels in MHR compared to HS plants, while immunoassays revealed elevated levels of lambda, phi, and tau GSTs. GST specific activity towards 1-chloro-2,4-dinitrobenzene was 1.2-fold higher in MHR4 than in HS1 plants and 1.3- and 1.2-fold higher in MHR3 than in HS1 and HS2 plants, respectively. However, GST specific activities towards fenoxaprop-P-ethyl and imazamethabenz-methyl were not different between untreated MHR and HS plants. Dehydroascorbate reductase specific activity was 1.4-fold higher in MHR than HS plants. Pretreatment with the GST inhibitor NBD-Cl did not affect MHR sensitivity to fenoxaprop-P-ethyl application, while the herbicide safener and GST inducer mefenpyr reduced the efficacy of low doses of fenoxaprop-P-ethyl on MHR4 but not MHR3 plants. Mefenpyr treatment also partially reduced the efficacy of thiencarbazone-methyl or mesosulfuron-methyl on MHR3 or MHR4 plants, respectively. Overall, the GSTs described here are not directly involved in enhanced rates of fenoxaprop-P-ethyl or imazamethabenz-methyl metabolism in MHR A. fatua. Instead, we propose that the constitutively elevated GST proteins and related enzymes in MHR plants are representative of a larger, more global suite of abiotic stress-related changes.en_US
dc.description.sponsorshipUSDA-NIFA-AFRI (2012-67013-19467, 2016-67013-24888); US EPA Strategic Agricultural Initiative grant (X8-97873401-0); Bayer CropScience; Montana Noxious Weed Trust Fund; Montana Wheat and Barley Committee; Montana Agricultural Experiment Stationen_US
dc.identifier.citationBurns, Erin E. , Barbara K. Keith, Mohammed Y. Refai, Brian Bothner, and William E. Dyer. "Proteomic and biochemical assays of glutathione-related proteins in susceptible and multiple herbicide resistant Avena fatua L.." Pesticide Biochemistry & Physiology (June 2017). DOI:https://dx.doi.org/10.1016/j.pestbp.2017.06.007.en_US
dc.identifier.issn0048-3575
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/13819
dc.titleProteomic and biochemical assays of glutathione-related proteins in susceptible and multiple herbicide resistant Avena fatua L.en_US
mus.citation.extentfirstpage69en_US
mus.citation.extentlastpage78en_US
mus.citation.journaltitlePesticide Biochemistry & Physiologyen_US
mus.citation.volume140en_US
mus.contributor.orcidDyer, William E.|0000-0003-0596-9139en_US
mus.data.thumbpage5en_US
mus.identifier.categoryLife Sciences & Earth Sciencesen_US
mus.identifier.doi10.1016/j.pestbp.2017.06.007en_US
mus.relation.collegeCollege of Agricultureen_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentChemistry & Biochemistry.en_US
mus.relation.departmentPlant Sciences & Plant Pathology.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Dyer_PBP_2017_A1b.pdf
Size:
654.88 KB
Format:
Adobe Portable Document Format
Description:
Proteomic and biochemical assays of glutathione-related proteins in susceptible and multiple herbicide resistant Avena fatua L. (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.