Sampling Gaussian distributions in Krylov spaces with conjugate gradients

dc.contributor.authorParker, Albert E.
dc.contributor.authorFox, Colin
dc.date.accessioned2017-02-02T18:28:48Z
dc.date.available2017-02-02T18:28:48Z
dc.date.issued2012-06
dc.description.abstractThis paper introduces a conjugate gradient sampler that is a simple extension of the method of conjugate gradients (CG) for solving linear systems. The CG sampler iteratively generates samples from a Gaussian probability density, using either a symmetric positive definite covariance or precision matrix, whichever is more convenient to model. Similar to how the Lanczos method solves an eigenvalue problem, the CG sampler approximates the covariance or precision matrix in a small dimensional Krylov space. As with any iterative method, the CG sampler is efficient for high dimensional problems where forming the covariance or precision matrix is impractical, but operating by the matrix is feasible. In exact arithmetic, the sampler generates Gaussian samples with a realized covariance that converges to the covariance of interest. In finite precision, the sampler produces a Gaussian sample with a realized covariance that is the best approximation to the desired covariance in the smaller dimensional Krylov space. In this paper, an analysis of the sampler is given, and we give examples showing the usefulness and limitations of the Krylov approximations.en_US
dc.identifier.citationParker A and Fox C, "Sampling Gaussian distributions in Krylov spaces with conjugate gradients," SIAM Journal on Scientific Computing, June 2012 34(3):B312–B334en_US
dc.identifier.issn1064-8275
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/12521
dc.titleSampling Gaussian distributions in Krylov spaces with conjugate gradientsen_US
dc.typeArticleen_US
mus.citation.extentfirstpage8312en_US
mus.citation.extentlastpage8334en_US
mus.citation.issue3en_US
mus.citation.journaltitleSIAM Journal on Scientific Computingen_US
mus.citation.volume34en_US
mus.data.thumbpage18en_US
mus.identifier.categoryChemical & Material Sciencesen_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.categoryLife Sciences & Earth Sciencesen_US
mus.identifier.doi10.1137/110831404en_US
mus.relation.collegeCollege of Agricultureen_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentMathematical Sciences.en_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
12-024_Sampling_Gaussian_distributions_.pdf
Size:
330.66 KB
Format:
Adobe Portable Document Format
Description:
Sampling Gaussian distributions in Krylov spaces with conjugate gradients (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.