The gut microbiome is required for full protection against acute arsenic toxicity in mouse models
Date
2018-12
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Arsenic poisons an estimated 200 million people worldwide through contaminated food and drinking water. Confusingly, the gut microbiome has been suggested to both mitigate and exacerbate arsenic toxicity. Here, we show that the microbiome protects mice from arsenic-induced mortality. Both antibiotic-treated and germ-free mice excrete less arsenic in stool and accumulate more arsenic in organs compared to control mice. Mice lacking the primary arsenic detoxification enzyme (As3mt) are hypersensitive to arsenic after antibiotic treatment or when derived germ-free, compared to wild-type and/or conventional counterparts. Human microbiome (stool) transplants protect germ-free As3mt-KO mice from arsenic-induced mortality, but protection depends on microbiome stability and the presence of specific bacteria, including Faecalibacterium. Our results demonstrate that both a functional As3mt and specific microbiome members are required for protection against acute arsenic toxicity in mouse models. We anticipate that the gut microbiome will become an important explanatory factor of disease (arsenicosis) penetrance in humans, and a novel target for prevention and treatment strategies.
Description
Keywords
Citation
Coryell, Michael, Mark McAlpine, Nicholas V. Pinkham, Timothy R. McDermott, and Seth T. Walk. “The Gut Microbiome Is Required for Full Protection Against Acute Arsenic Toxicity in Mouse Models.” Nature Communications 9, no. 1 (December 2018). doi:10.1038/s41467-018-07803-9.
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as CC BY, This license lets you distribute, remix, tweak, and build upon this work, even commercially, as long as you credit the original creator for this work. This is the most accommodating of licenses offered. Recommended for maximum dissemination and use of licensed materials.