Land Resources & Environmental Sciences

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/11

The Department of Land Resources and Environmental Sciences at Montana State Universityoffers integrative, multi-disciplinary, science-based degree programs at the B.S., M.S., and Ph.D. levels.

Browse

Search Results

Now showing 1 - 10 of 373
  • Thumbnail Image
    Item
    Consistent time allocation fraction to vegetation green-up versus senescence across northern ecosystems despite recent climate change
    (American Association for the Advancement of Science, 2024-06) Meng, Fandong; Felton, Andrew J.; Mao, Jiafu; Cong, Nan; Smith, William K.; Körner, Christian; Hu, Zhongmin; Hong, Songbai; Knott, Jonathan A.; Yan, Yanzi; Guo, Bixi; Deng, Ying; Leisz, Stephen J.; Dorji, Tsechoe; Wang, Shiping; Chen, Anping
    Extended growing season lengths under climatic warming suggest increased time for plant growth. However, research has focused on climatic impacts to the timing or duration of distinct phenological events. Comparatively little is known about impacts to the relative time allocation to distinct phenological events, for example, the proportion of time dedicated to leaf growth versus senescence. We use multiple satellite and ground-based observations to show that, despite recent climate change during 2001 to 2020, the ratio of time allocated to vegetation green-up over senescence has remained stable [1.27 (± 0.92)] across more than 83% of northern ecosystems. This stability is independent of changes in growing season lengths and is caused by widespread positive relationships among vegetation phenological events; longer vegetation green-up results in longer vegetation senescence. These empirical observations were also partly reproduced by 13 dynamic global vegetation models. Our work demonstrates an intrinsic biotic control to vegetation phenology that could explain the timing of vegetation senescence under climate change.
  • Thumbnail Image
    Item
    Assessing the effectiveness of satellite and UAV-based remote sensing for delineating alfalfa management zones under heterogeneous rootzone soil salinity
    (Elsevier BV, 2024-09) Sapkota, Anish; Verdi, Amir; Scudiero, Elia; Montazar, Ali
    Site-specific application of agricultural inputs is crucial for optimizing resource utilization in alfalfa (Medicago sativa L.) production and addressing challenges such as soil salinity. The main objective of this study was to assess the effectiveness of PlanetScope and UAV-based NDVI imagery for delineating alfalfa management zones under heterogeneous rootzone soil salinity. The research was conducted in the alfalfa field located in Imperial Valley, CA. The extent of rootzone soil salinity was assessed using Electromagnetic induction (EMI) technology and deep soil sampling. Reference management zones were then defined using the soil salinity (ECe) map derived from apparent electrical conductivity (ECa) data. Additionally, a time series of NDVI images from PlanetScope imagery and an NDVI image captured using an unmanned aerial vehicle were used to delineate remote sensing-based management zones. Laboratory analysis of disturbed soil samples collected at various depths provided soil physicochemical property data. Soil salinity of the samples ranged from 2.2 to 13.4 dS m−1 with a moderate level of variability (CV = 37.7 %). ECe-based management zones accounted for approximately 83 % of the field's variability and exhibited substantial differentiation among delineated zones concerning diverse soil properties, including ECa, ECe, gravimetric water content, Mg2+, boron, Ca2+, Na+, and Cl−. Notably, NDVI images effectively captured field variability on par with ECe-based zoning. Moreover, NDVI images recommended the same optimal number of zones (i.e., three) to address the field's variability, aligning with the ECe-based zoning approach. Our findings highlight that heterogeneity of soil salinity in the root zone primarily impacts the variability of alfalfa NDVI early in the growing season. Consequently, this early stage emerges as the most opportune timeframe for NDVI-based zoning for rapid assessment of rootzone soil salinity concerns.
  • Thumbnail Image
    Item
    Functional attributes of conifers expanding into temperate semi-arid grasslands modulate carbon and nitrogen fluxes in response to prescribed fire
    (Springer Science and Business Media LLC, 2024) Gay, Justin D.; Currey, Bryce; Davis, Kimberley T.; Brookshire, E. N. Jack
    Fire exclusion is a key factor driving conifer expansion into temperate semi-arid grasslands. However, it remains unclear how reintroducing fire affects the aboveground storage of carbon (C) and nitrogen (N) in the expanding tree species and belowground in soils. To assess the impacts of fire reintroduction C and N pools and fluxes in areas of conifer expansion we targeted a region of the Northern Great Plains that has experienced extensive woody plant expansion (WPE) of two species: ponderosa pine (Pinus ponderosa) and juniper (Juniperus spp). We quantified tree mortality of both species to estimate the amount of dead biomass C and N produced by a recent prescribed fire, in addition to changes in soil C, pyrogenic C (PyC), and N concentrations across a woody-cover gradient using a before/after/control experimental design. Post-fire soil chemical analysis revealed a 2 year increase in mineral soil C, PyC and N, suggesting the return of fire led to the transfer of partially combusted plant organic matter back to the soil. Further, we found that functional trait differences between the two species influenced the distribution of living conifer biomass-N prior to fire. Despite junipers having 41% less total aboveground biomass than ponderosa, they contained two times more aboveground N. Prescribed fire resulted in 88% mortality of all mature juniper stems and increased fire severity correlated with greater pre-fire juniper cover. Ponderosa mortality varied by size class, with > 40 cm stem diameter class having only 28% mortality. High mortality and greater aboveground N storage in juniper biomass, compared to ponderosa, led to 77% of the total conifer biomass N lost. Consequently, the functional attributes of expanding trees differentially contribute to fluxes of C and N after the return of fire, with junipers acting as conduits for N movement due to their relatively higher N content in less fire-resistant tissues and ponderosa serving as important and more stable storage pools for C. Together, these findings highlight the importance of considering species-specific traits when planning WPE management strrategies at landscape-scales, particularly when goals include C storage or soil nutrient status.
  • Thumbnail Image
    Item
    Optimizing crop seeding rates on organic grain farms using on farm precision experimentation
    (Elsevier BV, 2024-09) Loewen, Sasha; Maxwell, Bruce D.
    Organic agriculture is often regarded as less damaging to the environment than conventional agriculture, though at the expense of lower yields. Field-specific precision agriculture may benefit organic production practices given the inherent need of organic farmers to understand spatiotemporal variation on large-scale fields. Here the primary research question is whether on-farm precision experimentation (OFPE) can be used as an adaptive management methodology to efficiently maximize farmer net returns using variable cover crop and cash crop seeding rates. Inputs of cash crop seed and previous-year green manure cover crop seed were experimentally varied on five different farms across the Northern Great Plains from 2019 to 2022. Experiments provided data to model the crop yield response, and subsequently net return, in response to input (seeding) rates plus a suite of other spatially explicit data from satellite sources. New, field-specific spatially explicit optimum input rates were generated to maximize net return including temporal variation in economic variables. Inputs were spatially optimized and using simulations it was found that the optimization strategies consistently out-performed other strategies by reducing inputs and increasing yields, particularly for non-tillering crops. By adopting site specific management, the average increase in net return for all fields was $50 ha−1. These results showed that precision agriculture technologies and remote sensing can be utilized to provide organic farmers powerful adaptive management tools with a focus on within-field spatial variability in response to primary input drivers of economic return. Continued OFPE for seeding rate optimization will allow quantification of temporal variability and subsequent probabilistic recommendations.
  • Thumbnail Image
    Item
    Multitemporal Hyperspectral Characterization of Wheat Infested by Wheat Stem Sawfly, Cephus cinctus Norton
    (MDPI AG, 2024-09) Ermatinger, Lochlin S.; Powell, Scott L.; Peterson, Robert K.D.; Weaver, David K.
    Wheat (Triticum aestivum L.) production in the Northern Great Plains of North America has been challenged by wheat stem sawfly (WSS), Cephus cinctus Norton, for a century. Damaging WSS populations have increased, highlighting the need for reliable surveys. Remote sensing (RS) can be used to correlate reflectance measurements with nuanced phenomena like cryptic insect infestations within plants, yet little has been done with WSS. To evaluate interactions between WSS-infested wheat and spectral reflectance, we grew wheat plants in a controlled environment, experimentally infested them with WSS and recorded weekly hyperspectral measurements (350–2500 nm) of the canopies from prior to the introduction of WSS to full senescence. To assess the relationships between WSS infestation and wheat reflectance, we employed sparse multiway partial least squares regression (N-PLS), which models multidimensional covariance structures inherent in multitemporal hyperspectral datasets. Multitemporal hyperspectral measurements of wheat canopies modeled with sparse N-PLS accurately estimated the proportion of WSS-infested stems (R2 = 0.683, RMSE = 13.5%). The shortwave-infrared (1289–1380 nm) and near-infrared (942–979 nm) spectral regions were the most important in estimating infestation, likely due to internal feeding that decreases plant-water content. Measurements from all time points were important, suggesting aerial RS of WSS in the field should incorporate the visible through shortwave spectra collected from the beginning of WSS emergence at least weekly until the crop reaches senescence.
  • Thumbnail Image
    Item
    Microbial assemblages and associated biogeochemical processes in Lake Bonney, a permanently ice-covered lake in the McMurdo Dry Valleys, Antarctica
    (Springer Science and Business Media LLC, 2024-08) Lee, Hanbyul; Hwang, Kyuin; Cho, Ahnna; Kim, Soyeon; Kim, Minkyung; Morgan-Kiss, Rachael; Priscu, John C.; Mo Kim, Kyung; Kim, Ok-Sun
    Background. Lake Bonney, which is divided into a west lobe (WLB) and an east lobe (ELB), is a perennially ice-covered lake located in the McMurdo Dry Valleys of Antarctica. Despite previous reports on the microbial community dynamics of ice-covered lakes in this region, there is a paucity of information on the relationship between microbial genomic diversity and associated nutrient cycling. Here, we applied gene- and genome-centric approaches to investigate the microbial ecology and reconstruct microbial metabolic potential along the depth gradient in Lake Bonney. Results. Lake Bonney is strongly chemically stratified with three distinct redox zones, yielding different microbial niches. Our genome enabled approach revealed that in the sunlit and relatively freshwater epilimnion, oxygenic photosynthetic production by the cyanobacterium Pseudanabaena and a diversity of protists and microalgae may provide new organic carbon to the environment. CO-oxidizing bacteria, such as Acidimicrobiales, Nanopelagicales, and Burkholderiaceae were also prominent in the epilimnion and their ability to oxidize carbon monoxide to carbon dioxide may serve as a supplementary energy conservation strategy. In the more saline metalimnion of ELB, an accumulation of inorganic nitrogen and phosphorus supports photosynthesis despite relatively low light levels. Conversely, in WLB the release of organic rich subglacial discharge from Taylor Glacier into WLB would be implicated in the possible high abundance of heterotrophs supported by increased potential for glycolysis, beta-oxidation, and glycoside hydrolase and may contribute to the growth of iron reducers in the dark and extremely saline hypolimnion of WLB. The suboxic and subzero temperature zones beneath the metalimnia in both lobes supported microorganisms capable of utilizing reduced nitrogens and sulfurs as electron donors. Heterotrophs, including nitrate reducing sulfur oxidizing bacteria, such as Acidimicrobiales (MAG72) and Salinisphaeraceae (MAG109), and denitrifying bacteria, such as Gracilimonas (MAG7), Acidimicrobiales (MAG72) and Salinisphaeraceae (MAG109), dominated the hypolimnion of WLB, whereas the environmental harshness of the hypolimnion of ELB was supported by the relatively low in metabolic potential, as well as the abundance of halophile Halomonas and endospore-forming Virgibacillus. Conclusions. The vertical distribution of microbially driven C, N and S cycling genes/pathways in Lake Bonney reveals the importance of geochemical gradients to microbial diversity and biogeochemical cycles with the vertical water column.
  • Thumbnail Image
    Item
    Divergent metabolism estimates from dissolved oxygen and inorganic carbon: Implications for river carbon cycling
    (Wiley, 2024-08) Shangguan, Qipei; Payn, Robert A.; Hall Jr., Robert O.; Young, Fischer L.; Valett, H. Maurice; DeGrandpre, Michael D.
    Rivers efficiently collect, process, and transport terrestrial-derived carbon. River ecosystem metabolism is the primary mechanism for processing carbon. Diel cycles of dissolved oxygen (DO) have been used for decades to infer river ecosystem metabolic rates, which are routinely used to predict metabolism of carbon dioxide (CO2) with uncertainties of the assumed stoichiometry ranging by a factor of 4. Dissolved inorganic carbon (DIC) has been less used to directly infer metabolism because it is more difficult to quantify, involves the complexity of inorganic carbon speciation, and as shown in this study, likely requires a two-station approach. Here, we developed DIC metabolism models using single- and two-station approaches. We compared metabolism estimates based on simultaneous DO and DIC monitoring in the Upper Clark Fork River (USA), which also allowed us to estimate ecosystem-level photosynthetic and respiratory quotients (PQE and RQE). We observed that metabolism estimates from DIC varied more between single- and two-station approaches than estimates from DO. Due to carbonate buffering, CO2 is slower to equilibrate with the atmosphere compared to DO, likely incorporating a longer distance of upstream heterogeneity. Reach-averaged PQE ranged from 1.5 to 2.0, while RQE ranged from 0.8 to 1.5. Gross primary production from DO was larger than that from DIC, as was net ecosystem production by . The river was autotrophic based on DO but heterotrophic based on DIC, complicating our understanding of how metabolism regulated CO2 production. We suggest future studies simultaneously model metabolism from DO and DIC to understand carbon processing in rivers.
  • Thumbnail Image
    Item
    Global distribution and drivers of relative contributions among soil nitrogen sources to terrestrial plants
    (Springer Science and Business Media LLC, 2024-07) Hu, Chao-Chen; Liu, Xueyan; Driscoll, Avery W.; Kuang, Yuanwen; Brookshire, E. N. Jack; Lü, Xiao-Tao; Chen, Chong-Juan; Song, Wei; Mao, Rong; Liu, Cong-Qiang; Houlton, Benjamin Z.
    Soil extractable nitrate, ammonium, and organic nitrogen (N) are essential N sources supporting primary productivity and regulating species composition of terrestrial plants. However, it remains unclear how plants utilize these N sources and how surface-earth environments regulate plant N utilization. Here, we establish a framework to analyze observational data of natural N isotopes in plants and soils globally, we quantify fractional contributions of soil nitrate (fNO3-), ammonium (fNH4+), and organic N (fEON) to plant-used N in soils. We find that mean annual temperature (MAT), not mean annual precipitation or atmospheric N deposition, regulates global variations of fNO3-, fNH4+, and fEON. The fNO3- increases with MAT, reaching 46% at 28.5 °C. The fNH4+ also increases with MAT, achieving a maximum of 46% at 14.4 °C, showing a decline as temperatures further increase. Meanwhile, the fEON gradually decreases with MAT, stabilizing at about 20% when the MAT exceeds 15 °C. These results clarify global plant N-use patterns and reveal temperature rather than human N loading as a key regulator, which should be considered in evaluating influences of global changes on terrestrial ecosystems.
  • Thumbnail Image
    Item
    Momentum for agroecology in the USA
    (Springer Science and Business Media LLC, 2024-07) Ong, Theresa W.; Roman-Alcalá, Antonio; Jiménez-Soto, Estelí; Jackson, Erin; Perfecto, Ivette; Duff, Hannah
    The alarming convergence of ecological, health and societal crises underpins the urgent need to transform our agricultural and food systems. The global food system, with industrial agriculture at its core, poses a major threat to our planet’s health, contributing to climate change, biodiversity loss and food insecurity, which is known as the triple threat to humanity. The hidden costs of a global food system that relies on industrial agriculture are estimated to be US$12.7 trillion, with the vast majority driven by public-health crises due to unhealthy foods that disproportionately burden people on the lowest incomes.
  • Thumbnail Image
    Item
    Cool semi-arid cropping treatments alter Avena fatua's performance and competitive intensity
    (Wiley, 2024-03) Larson, Christian D.; Wong, Mei Long; Carr, Patrick M.; Seipel, Timothy
    Introduction. Multiple herbicide-resistant Avena fatua L. is common in the Northern Great Plains, USA. This prevalence and the ecological impacts of tillage in this semi-arid agricultural region have created a need for integrated weed management, with a specific knowledge gap in using annual forage crops and targeted grazing for A. fatua suppression. Materials and Methods. A 2-year study in central Montana, USA, assessed A. fatua performance (aboveground biomass, stem density and seed production) in response to seven cropping treatments: (1–4) tall and short spring wheat cultivars crossed with high and low seeding rates, (5–6) annual forage mixture terminated using sheep grazing and simulated haying and (7) tilled fallow. Avena fatua's competitive intensity in wheat and the annual forage mixture was determined using a relative competition intensity index. Results. Avena fatua performance was lowest in tilled fallow, although stem density and seed production did not differ from the grazed annual forage treatment. Response variables were lower in the forage treatments compared with the wheat treatments, and there were no differences among the four fully crossed wheat treatments. Separate analysis of the wheat treatments indicated lower A. fatua biomass and stem density when wheat was sown at a higher rate with no impact of wheat height. Avena fatua competition impacted wheat and forage crops but was more intense for wheat. Conclusion. Tillage was the most effective treatment at reducing A. fatua performance, but annual forage mixtures can be used to resist A. fatua invasion (reduced A. fatua competitive intensity) and limit its performance after invasion. We conclude that crop sequences that combine higher cash crop (wheat) seeding rates and competitive annual forage mixtures may be utilized to manage A. fatua invaded systems, thereby reducing heavy reliance on tillage in the US Northern Great Plains and similar semi-arid regions.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.