Enhanced coal-dependent methanogenesis coupled with algal biofuels: Potential water recycle and carbon capture

dc.contributor.authorBarnhart, Elliott P.
dc.contributor.authorDavis, Katherine J.
dc.contributor.authorVaronka, Matthew
dc.contributor.authorOrem, William
dc.contributor.authorCunningham, Alfred B.
dc.contributor.authorRamsay, Bradley D.
dc.contributor.authorFields, Matthew W.
dc.date.accessioned2017-06-19T16:23:18Z
dc.date.available2017-06-19T16:23:18Z
dc.date.issued2017-02
dc.description.abstractMany coal beds contain microbial communities that can convert coal to natural gas (coalbed methane). Native microorganisms were obtained from Powder River Basin (PRB) coal seams with a diffusive microbial sampler placed downhole and used as an inoculum for enrichments with different nutrients to investigate microbially-enhanced coalbed methane production (MECoM). Coal-dependent methanogenesis more than doubled when yeast extract (YE) and several less complex components (proteins and amino acids) were added to the laboratory microcosms. Stimulated coal-dependent methanogenesis with peptone was 86% of that with YE while glutamate-stimulated activity was 65% of that with YE, and a vitamin mix had only 33% of the YE stimulated activity. For field application of MECoM, there is interest in identifying cost-effective alternatives to YE and other expensive nutrients. In laboratory studies, adding algal extract (AE) with lipids removed stimulated coal-dependent methanogenesis and the activity was 60% of that with YE at 27 d and almost 90% of YE activity at 1406 d. Analysis of British Thermal Unit (BTU) content of coal (a measure of potential energy yield) from long-term incubations indicated > 99.5% of BTU content remained after coalbed methane (CBM) stimulation with either AE or YE. Thus, the coal resource remains largely unchanged following stimulated microbial methane production. Algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate algal biofuels while also sequestering carbon dioxide (CO2).en_US
dc.identifier.citationBarnhart EP, Davis KJ, Varonka M, Orem W, Cunningham AB, Ramsay BD, Fields MW, “Enhanced coal-dependent methanogenesis coupled with algal biofuels: Potential water recycle and carbon capture,” International Journal of Coal Geology, 2017 February; 171:69-75. doi: 10.1016/j.coal.2017.01.001.en_US
dc.identifier.issn0166-5162
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/13075
dc.titleEnhanced coal-dependent methanogenesis coupled with algal biofuels: Potential water recycle and carbon captureen_US
dc.typeArticleen_US
mus.citation.extentfirstpage69en_US
mus.citation.extentlastpage75en_US
mus.citation.journaltitleInternational Journal of Coal Geologyen_US
mus.citation.volume171en_US
mus.contributor.orcidDavis, Katherine J.|0000-0002-0562-7035en_US
mus.data.thumbpage5en_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.doi10.1016/j.coal.2017.01.001en_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentChemical Engineering.en_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
17-028_Enchanced_Coal-dependent_methanogenesis_coupled_A1b.pdf
Size:
891.69 KB
Format:
Adobe Portable Document Format
Description:
Enhanced coal-dependent methanogenesis coupled with algal biofuels: Potential water recycle and carbon capture (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.