Hyperbolicity of the fixed point set for the simple genetic algorithm
Date
2010-05
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We study an infinite population model for the genetic algorithm, where the iteration of the algorithm corresponds to an iteration of a map G. The map G is a composition of a selection operator and a mixing operator, where the latter models effects of both mutation and crossover. We examine the hyperbolicity of fixed points of this model. We show that for a typical mixing operator all the fixed points are hyperbolic.
Description
Keywords
Citation
C. Hayes and T. Gedeon, “Hyperbolicity of the fixed point set for the simple genetic algorithm,” Theoretical Computer Science, vol. 411, no. 25, pp. 2368–2383, (May 2010).