Electron Bifurcating FixABCX Protein Complex from Azotobacter vinelandii: Generation of Low-Potential Reducing Equivalents for Nitrogenase Catalysis

dc.contributor.authorLedbetter, Rhesa N.
dc.contributor.authorGarcia Costas, Amaya M.
dc.contributor.authorLubner, Carolyn E.
dc.contributor.authorMulder, David W.
dc.contributor.authorTokmina-Lukaszewska, Monika
dc.contributor.authorArtz, Jacob H.
dc.contributor.authorPatterson, Angela
dc.contributor.authorMagnuson, Timothy S.
dc.date.accessioned2017-10-10T16:31:53Z
dc.date.available2017-10-10T16:31:53Z
dc.date.issued2017-08
dc.description.abstractThe biological reduction of dinitrogen (N2) to ammonia (NH3) by nitrogenase is an energetically demanding reaction that requires low-potential electrons and ATP; however, pathways used to deliver the electrons from central metabolism to the reductants of nitrogenase, ferredoxin or flavodoxin, remain unknown for many diazotrophic microbes. The FixABCX protein complex has been proposed to reduce flavodoxin or ferredoxin using NADH as the electron donor in a process known as electron bifurcation. Herein, the FixABCX complex from Azotobacter vinelandii was purified and demonstrated to catalyze an electron bifurcation reaction: oxidation of NADH (Em = −320 mV) coupled to reduction of flavodoxin semiquinone (Em = −460 mV) and reduction of coenzyme Q (Em = 10 mV). Knocking out fix genes rendered Δrnf A. vinelandii cells unable to fix dinitrogen, confirming that the FixABCX system provides another route for delivery of electrons to nitrogenase. Characterization of the purified FixABCX complex revealed the presence of flavin and iron–sulfur cofactors confirmed by native mass spectrometry, electron paramagnetic resonance spectroscopy, and transient absorption spectroscopy. Transient absorption spectroscopy further established the presence of a short-lived flavin semiquinone radical, suggesting that a thermodynamically unstable flavin semiquinone may participate as an intermediate in the transfer of an electron to flavodoxin. A structural model of FixABCX, generated using chemical cross-linking in conjunction with homology modeling, revealed plausible electron transfer pathways to both high- and low-potential acceptors. Overall, this study informs a mechanism for electron bifurcation, offering insight into a unique method for delivery of low-potential electrons required for energy-intensive biochemical conversions.en_US
dc.identifier.citationLedbetter RN, Amaya M. Garcia Costas, Carolyn E. Lubner, David W. Mulder, Monika Tokmina-Lukaszewska, Jacob H. Artz, Angela Patterson, Timothy S. Magnuson, Zackary J. Jay, H. Dissel Duan, Jacquelyn Miller, Mary H. Plunkett, John P. Hoben, Brett M. Barney, Ross P. Carlson, Anne-Frances Miller, Brian Bothner, Paul W. King, John W. Peters, Lance C. Seefeldt, “The Electron Bifurcating FixABCX Protein Complex from Azotobacter Vinelandii: Generation of Low-Potential Reducing Equivalents for Nitrogenase Catalysis.” Biochemistry 56, no. 32 (August 3, 2017): 4177–4190. doi:10.1021/acs.biochem.7b00389.en_US
dc.identifier.issn0006-2960
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/13808
dc.titleElectron Bifurcating FixABCX Protein Complex from Azotobacter vinelandii: Generation of Low-Potential Reducing Equivalents for Nitrogenase Catalysisen_US
dc.typeArticleen_US
mus.citation.extentfirstpage4177en_US
mus.citation.extentlastpage4190en_US
mus.citation.issue32en_US
mus.citation.journaltitleBiochemistryen_US
mus.citation.volume56en_US
mus.contributor.orcidTokmina-Lukaszewska, Monika|0000-0003-3298-8298en_US
mus.data.thumbpage5en_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.doi10.1021/acs.biochem.7b00389en_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentChemical Engineering.en_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
17-039_The_Electron_Bifurcating_FixABCX_Protein_Complex_A1b.pdf
Size:
4.1 MB
Format:
Adobe Portable Document Format
Description:
Electron Bifurcating FixABCX Protein Complex from Azotobacter vinelandii: Generation of Low-Potential Reducing Equivalents for Nitrogenase Catalysis (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.