Iron induces bimodal population development by Escherichia coli
dc.contributor.author | DePas, W. H. | |
dc.contributor.author | Hufnagel, D. A. | |
dc.contributor.author | Lee, J. S. | |
dc.contributor.author | Blanco, L. P. | |
dc.contributor.author | Bernstein, Hans C. | |
dc.contributor.author | Fisher, Steve T. | |
dc.contributor.author | James, Garth A. | |
dc.contributor.author | Stewart, Philip S. | |
dc.contributor.author | Chapman, M. R. | |
dc.date.accessioned | 2017-01-30T23:45:40Z | |
dc.date.available | 2017-01-30T23:45:40Z | |
dc.date.issued | 2013-01 | |
dc.description.abstract | Bacterial biofilm formation is a complex developmental process involving cellular differentiation and the formation of intricate 3D structures. Here we demonstrate that exposure to ferric chloride triggers rugose biofilm formation by the uropathogenic Escherichia coli strain UTI89 and by enteric bacteria Citrobacter koseri and Salmonella enterica serovar typhimurium. Two unique and separable cellular populations emerge in iron-triggered, rugose biofilms. Bacteria at the air–biofilm interface express high levels of the biofilm regulator csgD, the cellulose activator adrA, and the curli subunit operon csgBAC. Bacteria in the interior of rugose biofilms express low levels of csgD and undetectable levels of matrix components curli and cellulose. Iron activation of rugose biofilms is linked to oxidative stress. Superoxide generation, either through addition of phenazine methosulfate or by deletion of sodA and sodB, stimulates rugose biofilm formation in the absence of high iron. Additionally, overexpression of Mn-superoxide dismutase, which can mitigate iron-derived reactive oxygen stress, decreases biofilm formation in a WT strain upon iron exposure. Not only does reactive oxygen stress promote rugose biofilm formation, but bacteria in the rugose biofilms display increased resistance to H2O2 toxicity. Altogether, we demonstrate that iron and superoxide stress trigger rugose biofilm formation in UTI89. Rugose biofilm development involves the elaboration of two distinct bacterial populations and increased resistance to oxidative stress. | en_US |
dc.identifier.citation | DePas WH, Hufnagel DA, Lee JS, Blanco LP, Bernstein HC, Fisher ST, James GA, Stewart PS, Chapman MR, "Iron induces bimodal population development by Escherichia coli," PNAS. 2013 110(7):2629-2634. | en_US |
dc.identifier.issn | 1091-6490 | |
dc.identifier.uri | https://scholarworks.montana.edu/handle/1/12479 | |
dc.title | Iron induces bimodal population development by Escherichia coli | en_US |
dc.type | Article | en_US |
mus.citation.extentfirstpage | 2629 | en_US |
mus.citation.extentlastpage | 2634 | en_US |
mus.citation.issue | 7 | en_US |
mus.citation.journaltitle | Proceedings of the National Academy of Sciences | en_US |
mus.citation.volume | 110 | en_US |
mus.contributor.orcid | Bernstein, Hans C.|0000-0003-2913-7708 | en_US |
mus.data.thumbpage | 4 | en_US |
mus.identifier.category | Engineering & Computer Science | en_US |
mus.identifier.category | Life Sciences & Earth Sciences | en_US |
mus.identifier.doi | 10.1073/pnas.1218703110 | en_US |
mus.relation.college | College of Agriculture | en_US |
mus.relation.college | College of Engineering | en_US |
mus.relation.college | College of Letters & Science | en_US |
mus.relation.department | Center for Biofilm Engineering. | en_US |
mus.relation.department | Chemical & Biological Engineering. | en_US |
mus.relation.department | Chemical Engineering. | en_US |
mus.relation.department | Chemistry & Biochemistry. | en_US |
mus.relation.department | Microbiology & Immunology. | en_US |
mus.relation.researchgroup | Center for Biofilm Engineering. | en_US |
mus.relation.university | Montana State University - Bozeman | en_US |
Files
Original bundle
1 - 1 of 1
- Name:
- 13-006_Iron_induces_bimodal__A1b.pdf
- Size:
- 3.47 MB
- Format:
- Adobe Portable Document Format
- Description:
- Iron induces bimodal population development by Escherichia coli (PDF)
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 826 B
- Format:
- Item-specific license agreed upon to submission
- Description: