Transport limitation of chlorine disinfection of pseudomonas aeruginosa entrapped in alginate beads
dc.contributor.author | Xu, Xiaoming | |
dc.contributor.author | Stewart, Philip S. | |
dc.contributor.author | Chen, Xiao | |
dc.date.accessioned | 2018-01-30T23:47:25Z | |
dc.date.available | 2018-01-30T23:47:25Z | |
dc.date.issued | 1996-01 | |
dc.description.abstract | An artificial biofilm system consisting of Pseudomonas aeruginosa entrapped in alginate and agarose beads was used to demonstrate transport limitation of the rate of disinfection of entrapped bacteria by chlorine. Alginate gel beads with or without entrapped bacteria consumed chlorine. The specific rate of chlorine consumption increased with increasing cell loading in the gel beads and decreased with increasing bead radius. The value of an observable modulus comparing the rates of reaction and diffusion ranged from less than 0.1 to 8 depending on the bead radius and cell density. The observable modulus was largest for large (3-mm-diameter) beads with high cell loading (1.8 × 109 cfu/cm3) and smallest for small beads (0.5 mm diameter) with no cells added. A chlorine microelectrode was used to measure chlorine concentration profiles in agarose beads (3.0 mm diameter). Chlorine fully penetrated cell-free agarose beads rapidly; the concentration of chlorine at the bead center reached 50% of the bulk concentration within approximately 10 min after immersion in chlorine solution. When alginate and bacteria were incorporated into an agarose bead, pronounced chlorine concentration gradients persisted within the gel bead. Chlorine did gradually penetrate the bead, but at a greatly retarded rate; the time to reach 50% of the bulk concentration at the bead center was approximately 46 h. The overall rate of disinfection of entrapped bacteria was strongly dependent on cell density and bead radius. Small beads with low initial cell loading (0.5 mm diameter, 1.1 × 107 cfu/cm3) experienced rapid killing; viable cells could not be detected (<1.6 × 105 cfu/cm3) after 15 min of treatment in 2.5 mg/L chlorine. In contrast, the number of viable cells in larger beads with a higher initial cell density (3.0 mm diameter, 2.2 × 109 cfu/cm3) decreased only about 20% after 6 h of treatment in the same solution. Spatially nonuniform killing of bacteria within the beads was demonstrated by measuring the transient release of viable cells during dissolution of the beads. Bacteria were killed preferentially near the bead surface. Experimental results were consistent with transport limitation of the penetration of chlorine into the artificial biofilm arising from a reaction–diffusion interaction. The methods reported here provide tools for diagnosing the mechanism of biofilm resistance to reactive antimicrobial agents in such applications as the treatment of drinking and cooling waters. | en_US |
dc.identifier.citation | Xu, X., P.S. Stewart and X. Chen, “Transport Limitation of Chlorine Disinfection of Pseudomonas aeruginosa Entrapped in Alginate Beads,” Biotechnology and Bioengineering, 49:93-100 (1996). | en_US |
dc.identifier.issn | 0006-3592 | |
dc.identifier.uri | https://scholarworks.montana.edu/handle/1/14254 | |
dc.title | Transport limitation of chlorine disinfection of pseudomonas aeruginosa entrapped in alginate beads | en_US |
dc.type | Article | en_US |
mus.citation.extentfirstpage | 93 | en_US |
mus.citation.extentlastpage | 100 | en_US |
mus.citation.issue | 1 | en_US |
mus.citation.journaltitle | Biotechnology and Bioengineering | en_US |
mus.citation.volume | 49 | en_US |
mus.contributor.orcid | Stewart, Philip S.|0000-0001-7773-8570 | en_US |
mus.data.thumbpage | 4 | en_US |
mus.identifier.category | Engineering & Computer Science | en_US |
mus.identifier.doi | 10.1002/(sici)1097-0290(19960105)49:1<93::aid-bit12>3.3.co;2-p | en_US |
mus.relation.college | College of Engineering | en_US |
mus.relation.department | Center for Biofilm Engineering. | en_US |
mus.relation.department | Chemical & Biological Engineering. | en_US |
mus.relation.department | Chemical Engineering. | en_US |
mus.relation.researchgroup | Center for Biofilm Engineering. | en_US |
mus.relation.university | Montana State University - Bozeman | en_US |
Files
Original bundle
1 - 1 of 1
- Name:
- 96-005_Transport_limitation_of_.pdf
- Size:
- 782.38 KB
- Format:
- Adobe Portable Document Format
- Description:
- Transport limitation of chlorine disinfection of pseudomonas aeruginosa entrapped in alginate beads (PDF)
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 826 B
- Format:
- Item-specific license agreed upon to submission
- Description: