Spatiotemporal mapping of oxygen in a microbially-impacted packed bed using 19F Nuclear magnetic resonance oximetry

dc.contributor.authorSimkins, Jeffrey W.
dc.contributor.authorStewart, Philip S.
dc.contributor.authorSeymour, Joseph D.
dc.date.accessioned2019-01-28T21:48:12Z
dc.date.available2019-01-28T21:48:12Z
dc.date.issued2018-08
dc.description.abstract19F magnetic resonance has been used in the medical field for quantifying oxygenation in blood, tissues, and tumors. The 19F NMR oximetry technique exploits the affinity of molecular oxygen for liquid fluorocarbon phases, and the resulting linear dependence of 19F spin–lattice relaxation rate R1 on local oxygen concentration. Bacterial biofilms, aggregates of bacteria encased in a self-secreted matrix of extracellular polymers, are important in environmental, industrial, and clinical settings and oxygen gradients represent a critical determinant of biofilm function. However, measurement of oxygen distribution in biofilms and biofouled porous media is difficult. Here the ability of 19F NMR oximetry to accurately track oxygen profile development in microbial impacted packed bed systems without impacting oxygen transport is demonstrated. Time-stable and inert fluorocarbon containing particles are designed which act as oxygen reporters in porous media systems. Particles are generated by emulsifying and entrapping perfluorooctylbromide (PFOB) into alginate gel, resulting in oxygen-sensing alginate beads that are then used as the solid matrix of the packed bed. 19F oxygenation maps, when combined with 1H velocity maps, allow for insight into the interplay between fluid dynamics and oxygen transport phenomena in these complex biofouled systems. Spatial maps of oxygen consumption rate constants are calculated. The growth characteristics of two bacteria, a non-biofilm forming Escherichia coli and Staphylococcus epidermidis, a strong biofilm-former, are used to demonstrate the novel data provided by the method.en_US
dc.identifier.citationSimkins, Jeffrey W., Philip S. Stewart, and Joseph D. Seymour, “Spatiotemporal mapping of oxygen in a microbially-impacted packed bed using 19F Nuclear magnetic resonance oximetry,” Journal of Magnetic Resonance, August 2018; 293:123-133. doi: 10.1016/j.jmr.2018.06.008en_US
dc.identifier.issn1090-7807
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/15181
dc.language.isoenen_US
dc.rightsThis Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en_US
dc.titleSpatiotemporal mapping of oxygen in a microbially-impacted packed bed using 19F Nuclear magnetic resonance oximetryen_US
dc.typeArticleen_US
mus.citation.extentfirstpage123en_US
mus.citation.extentlastpage133en_US
mus.citation.journaltitleJournal of Magnetic Resonanceen_US
mus.citation.volume293en_US
mus.contributor.orcidSimkins, Jeffrey W.|0000-0001-7872-236Xen_US
mus.data.thumbpage8en_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.doi10.1016/j.jmr.2018.06.008en_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
18-020_Spatiotemporal_mapping_of_oxygen_in_FINAL.pdf
Size:
4 MB
Format:
Adobe Portable Document Format
Description:
Spatiotemporal mapping of oxygen in a microbially-impacted packed bed using 19F Nuclear magnetic resonance oximetry (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.