A hybrid SOFC-microturbine combined-cycle system : modeling, efficiency evaluation and power management

Thumbnail Image

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Montana State University - Bozeman, College of Engineering

Abstract

As centralized electricity generation and transmission issues continue to complicate electricity demand, interest in distributed generation solutions is increasing. Solid oxide fuel cells are high temperature and efficiency electrochemical devices that can operate on natural gas as well as hydrogen. When in combined cycle operation with a microturbine, the system has the ability to utilize the unused fuel from the solid oxide fuel cell and waste heat to increase the electrical energy, overall efficiency, and feasibility of market penetration of the system. The waste heat can also be repurposed outside the system, known as combined heat and power, for heating residential water supplies. This thesis presents the modeling, efficiency evaluation and power management of a hybrid solid oxide fuel cell/microturbine system in combined cycle operation with combined heat and power functionality for residential applications in islanded and grid-connected modes. The response of the system to load changes is also examined. The dynamic models of the solid oxide fuel cell and microturbine are integrated using power electronic interfacing and simulated in Matlab/Simulink. Simulation results demonstrate an efficiency increase of the system in combined cycle operation and the dynamic behavior of the system in stand-alone operation under different load conditions.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By

Copyright (c) 2002-2022, LYRASIS. All rights reserved.