Browsing by Author "Chen, Chengci"
Now showing 1 - 20 of 36
- Results Per Page
- Sort Options
Item 2008 India, Australia and Western Regional Chickpea Line Evaluations(Central Agricultural Research Center, 2008) McPhee, K.; Chen, Chengci; Neill, Karnes E.; Heser, J.This paper evaluates chickpea selections from the India, Australia and the USDA-ARS Grain Legume Genetics and Physiology program in Pullman, Washington, for grain production potential in Central Montana. Chickpea grain yields were exceptional at Moccasin, with the trial averaging 1,248 lbs per acre (at 13% grain moisture; Table 3). As a whole, the India and Australia Lines were superior to the USDA line and three check varieties. These lines are in the Small Kabuli and Desi-type chickpeas versus the traditional Large Kabuli-type, as are the check varieties and USDA-ARS lines. Historically, small Kabuli and Desi-type chickpeas perform better at CARC. The Australian Desi-type Line AC48111 had the greatest grain production (at 13% moisture) with 1,478 lbs acre-1, but was only significantly greater (based on LSD0.05) than six other India and Australia lines and all but one of the USDA-ARS lines.Item 2008 Statewide Spring Dry Pea and Lentil Variety Evaluations(Central Agricultural Research Center, 2008) Chen, Chengci; Neill, Karnes E.; Carlson, G. R.; Miller, John H.; Stougaard, Robert N.; Strang, L.; Westcott, M.; Knox, M.; Eckhoff, Joyce L.; Miller, Perry R.; Holmes, Jeffrey A.; Tarum, M.; Koenig, V.This paper evaluates spring dry pea and lentil varieties for grain production potential in diverse Montana environments. Dry pea grain yields were respectable among most of the testing sites (Table 3). Havre had the greatest production, with a trial average (converted to 13% moisture) of nearly 65 bushels acre-1 (65.6 bu/acre – 3,868 lbs/acre). Moccasin had the worst yield averaging less than 17 bushels acre-1 (16.1 bu/acre - 986 lbs/acre) which is much below long-term means and is thought to be due to poor sub-soil moisture, hail damage, snow and record lows in mid-June, and an insect infestation. As expected, no single entry was the top yielding variety at every location. However, the smooth yellow line PS9910140 did top the trial yields at three locations, and was among the top cultivars in the other locations. Lentil grain yields ranged from 450 to 2300 lbs acre-1 and were respectable across the state (Table 7), with the exceptions being Conrad (450 lbs acre-1), which had a poor stand establishment and Sidney (trial abandoned), which had poor soil moisture at seeding and experienced drought-like conditions through the growing season. Differences in grain yield between the dry pea and lentil trials at Moccasin can be attributed to planting of the lentil trial in a different field, which contained better stored soil moisture. The “Richlea”-type lentil line LC01602300R showed the greatest seed production at three of the six sites, with a grain yield ranging from 9.0 (at Conrad) to over 44 bushels acre-1 (Creston), but was not significant at any location (based on LSD0.05).Item 2008 Western Regional Spring Dry Pea and Lentil Evaluations(Central Agricultural Research Center, 2008) McPhee, K.; Vandemark, G.; Chen, Chengci; Neill, Karnes E.; Heser, J.This paper evaluates dry pea and lentil selections from the USDA-ARS Grain Legume Genetics and Physiology program in Pullman, Washington, for grain production potential in Central Montana. Dry pea grain yields were much below long-term means and is thought to be due to poor sub-soil moisture, a hail storm, snow and record lows in mid-June, and an insect (pea leaf weevil) infestation. The trial grain yield mean was 1,038 lbs acre-1 (converted to 13% grain moisture - field grain moisture was 923 lbs acre-1; Table 3). The smooth yellow line PS03101822 had the greatest grain production at 13% moisture, averaging 1,282 lbs acre-1, but was not significantly greater than the smooth green line PS03101445 (based on LSD0.05). Lentil grain yields averaged (at 13% moisture) 1,688 lbs acre-1, which was the best Western Regional lentil production at Moccasin since the 2000 crop-year, which averaged an all-time best of 2300 lbs acre-1 at 13% grain moisture (Table 4). At field grain moisture, the Turkish-red line LC01601724T had the highst grain production (not significant). When yields were converted to 13% grain moisture, Eston had the greatest grain production (1,883 lbs acre-1; not significant based on LSD0.05).Item Camelina Seed Yield and Fatty Acids as Influenced by Genotype and Environment(2017-05) Obour, Augustine K.; Obeng, Eric; Mohammed, Yesuf A.; Ciampitti, Ignacio A.; Durett, Timothy P.; Aznar-Moreno, Jose A.; Chen, ChengciCamelina (Camelina sativa L. Crantz) is an alternative oil-seed crop with potential for fallow replacement in dryland cereal-based crop production systems in the semiarid Great Plains. The interaction between genotype and environment was investigated on camelina seed yield, oil content, and fatty acid composition across two locations in the U.S. Great Plains. Treatments were three spring camelina genotypes (cultivars Blaine Creek, Pronghorn, and Shoshone), three growing seasons (2013, 2014, and 2015) and two locations (at Hays, KS, and Moccasin, MT). Results showed camelina grown at Hays yielded 54% less than that at Moccasin. Blaine Creek yielded 17 and 42% more than Pronghorn and Shoshone at Hays but yields were not different among genotypes at Moccasin. Oil content ranged from 262 g kg(-1) at Hays to 359 g kg(-1) at Moccasin. The proportion of polyunsaturated fatty acids (PUFAs) ranged from 51% at Hays to 55% at Moccasin, whereas monounsaturated fatty acid (MUFA) and saturated fatty acid (SFA) contents were greater at Hays. The linolenic acid content ranged from 26% when Pronghorn was planted at Hays to 35% when planted at Moccasin. In general, the variations in seed yield and fatty acid profile corresponded well with growing season precipitation and temperatures at each environment.Item Canola and Sweet Lupin -- Potential New Rotation Crops for Central Montana (2003)(Central Agricultural Research Center, 2003) Chen, Chengci; Wichman, David M.; Neill, Karnes E.; Brown, Jack; Weeden, Norman F.; Vavrovsky, JoeThis paper evaluates new regular and specialty canola genotypes from public and private breeders from various regions of U.S. and Canada for adaptation and evaluates narrow leaf lupine genotypes, from Australia and Poland, for adaptation and yield potential in central Montana. Due to the severe summer drought in 2003, canola and lupin did not perform well in the field. Yields were extremely low. Although differences were observed among the cultivars, there was not enough evidence to justify the adaptability of the genotypes in this one-year trial under an unusual weather pattern. The growth chamber study shows great variations among canola genotypes in base temperature and heat unit required for emergence. These results will provide a reference for the selection of canola genotypes for early planting. Previous studies have shown yield advantage of early seeding.Item Determine Canola Optimum Seeding Date and Rate in Central Montana (2002)(Central Agricultural Research Center, 2002) Chen, Chengci; Neill, Karnes E.; Wichman, David M.This report investigates seeding date and plant density effects on canola yield in central Montana and compares different Roundup-Ready canola varieties for their adaptation to the environments in central Montana. There was no difference between drill types in canola emergence. Both drill types had over 90% emergence rate. DK 3455 at the second seeding date and all three varieties at the third seeding date were damaged by hail before harvesting. Therefore, only yields of DK 223 and Hyola 357 from the first two seeding dates are reported here. Although the earlier the canola was planted the higher of yield received, considering the wet soil conditions and equipment accessibility to the field in the early spring, mid-April is considered the optimum seeding date in the region. The optimum seeding rate is 3 plants/ft2. The DK 223 is recommended a suitable variety for the region. However, due to the highly spatial and temporal variations of climate and soil in central Montana, and unpredictable weather from year to year, this study needs to be repeated to confirm the results.Item Durum wheat yield and protein influenced by nitrogen management and cropping rotation(Informa UK Limited, 2022-04) Chen, Chengci; Zhou, Shuang; Afshar, Reza Keshavarz; Franck, William; Zhou, YiNitrogen (N) is the major input for cereal grain production. N management in durum wheat (Triticum turgidum subsp. durum) is critical for optimizing grain yield, protein concentration, and utilization efficiency of nitrogen fertilizer. A two-year study was conducted in the semi-arid region of the US Northern Great Plains (NGP) to investigate nitrogen input levels and application methods under fallow-durum and pea-durum systems. A durum wheat (cv. Joppa) was planted in the field following fallow or field pea with N input levels of 65 and 135 kg ha−1 and four application methods for each N input level. Results showed that water was the major limiting factor determining grain yield and protein concentration. Grain yield was greater but with similar protein concentration following fallow (1958 kg ha−1, 16.7%) than following field pea (1754 kg ha−1, 16.4%). Increasing N input from 65 kg ha−1 to 135 kg ha−1decreased grain yield from 1933 to 1779 kg ha−1 but improved protein concentration from 16.3 to 16.8%, which resulted in a negative nitrogen use efficiency (NUE). Application method of N did not significantly affect yield and protein, but there was a trend of yield increase via split application of N at the lower rate in a wetter year. The drought in 2017 resulted in lower test weight and harvest index (HI). The HI was lower in the135 kg ha−1 N rate than in the 65 kg ha−1 N rate, especially in the dryer year. Excessive N inputs in a water-limited environment may result in ‘haying-off’.Item Energy balance & greenhouse gas emissions of dryland camelina as influenced by tillage and nitrogen(2015-11) Keshavarz-Afshar, Reza; Mohammed, Yesuf Assen; Chen, ChengciDespite the great potential of camelina (Camelina sativa L. Crantz) as a promising biofuel feedstock, in-farm energy flow of the crop and its associated environmental impacts has not received sufficient attention from researchers. In order to assess net energy gain and to identify energy saving and environmental friendly production operations, a two year study was conducted at central Montana. We investigated the effects of tillage method (CT (conventional tillage) vs. NT (no-tillage)) and N (nitrogen) fertilizer rate (0, 45, 90 kg N ha−1) on energy balance and GHG (greenhouse gas emission) of dryland camelina production. Results indicated that energy input and GHG emission were 5 and 8% lower in NT than in CT. Application of 45 and 90 kg N ha−1 increased camelina energy input by 186 and 365%, while increased energy output by only 21 and 64%, respectively. There was no significant difference in net energy gain in response to N fertilization, but lower energy efficiency in response to higher N inputs. Averaged across tillage systems, the GHG emission was 32.0 kg C eq ha−1 with 0 N applied, and the GHG emission increased by 206 and 389% when 45 and 90 kg N ha−1 was applied. Overall, N fertilizer had the biggest share in total energy input. Averaged over all experimental treatments, 14,945 MJ ha−1 net energy was obtained from camelina crop in this study which shows the potential of this crop as a bioenergy feedstock. Our result showed that implementation of NT is strongly recommendable for camelina production in this region. Moreover, improvement of N use efficiency has the highest priority to improve energy performance and reduce GHG emissions in camelina production.Item Evaluation of Dry Peas (Pisum sativum L.) Varieties for Seedling Vigor Indices in Eastern Montana(2018-12) Walia, Maninder K.; Mohammed, Yesuf A.; Chen, ChengciGenetic and environmental factors lead to a variation in yield and protein content of dry pea (Pisum sativum L.) seeds. The quality of seed, particularly seed vigor, also influences the establishment of crop and thus final grain yield. The area and production for dry peas are increasing in the Northern Great Plains but knowledge is lacking on how the pea lines/varieties differ in the seed vigor at seven leaf stage. This field and greenhouse study evaluated the eight dry pea lines/varieties for seedling vigor indices and correlated them with grain yield and protein concentrations. Significant differences were observed among the lines/varieties for nodule number plant(-1) in greenhouse, and grain yield in field conditions. The highest number of nodules plant(-1) was obtained with the line MT632, which were at par with lines MT457, and MT190. The highest Vigor Index I was achieved with line MT632 associated with their more shoot lengths as compared to other lines/varieties. The highest Vigor Index II was obtained by variety Majoret and line MT632. The variety DS Admiral yielded 5205 kg ha(-1), which was 17.4 and 33.3% higher than lines MT460 and MT190, respectively. The highest seed protein content was obtained with variety Majoret (23.4%) having highest Vigor Index II and seed yield (4940 kg ha(-1)) at par with variety DS Admiral. The lowest seed protein was found with variety DS Admiral (20.3%). The line named MT190 showed lowest yield potential along with the lower protein contents also. Studies show a positive and significant correlation between biomass and Vigor Index I only. Plant nitrogen uptake was positively and significantly correlated with biomass and Vigor Index I in greenhouse only. The results also indicated that seed vigor indices did not reveal any significant correlations with dry peas yield and protein content, so more efforts are needed to evaluate varieties for higher yield and protein content during initial stages of growth in order to maximize their acreage and productivity.Item Evaluation of environment and cultivar impact on lentil protein, starch, mineral nutrients, and yield(Wiley, 2021-12) Chen, Chengci; Etemadi, Fatemeh; Franck, William; Franck, Sooyoung; Abdelhamid, Magdi T.; Ahmadi, Jafar; Mohammed, Yesuf Assen; Lamb, Peggy F.; Miller, John H.; Carr, Patrick M.; McPhee, Kevin; Zhou, Yi; Torabian, Shahram; Qin, RuijunLentil (Lens culinaris Medik.) is an important source of protein, starch, and mineral nutrients in many parts of the world. However, the impact of environment and cultivar on the enrichment of these nutrients is not well understood. Four lentil cultivars (‘Avondale’, ‘CDC Richlea’, ‘CDC Maxim’, and ‘CDC Imvincible’) varying in color, seed size, and maturity were evaluated at five Montana locations with diverse climatic and soil conditions over 3 yr. Significant cultivar, location, and year effects were found for yield, protein, starch, and minerals. Grain protein concentration was the highest at Moccasin (262 g kg−1) and lowest at Richland (246 g kg−1), whereas starch concentration was the highest at Richland (455 g kg−1) and lowest at Moccasin(441gkg−1). Among cultivars, Avondale was the top yielding cultivar (1965 kg ha−1)and adaptable to most of the environments; CDC Imvincible was the top protein producer (265 g kg−1); and CDC Richlea is the leading starch producer (456 g kg−1). Grain protein concentration was negatively correlated with starch. Lentil grains varied in nutrient concentrations across locations, with the north central Montana region producing 10- to 20-times greater selenium concentration than other locations. CDC Maxim had the highest iron (62.1 mg kg−1) and zinc (31.5 mg kg−1) concentrations.Seed protein concentration was positively correlated with phosphorus, sulfur, cop-per, and boron. Seed starch is positively correlated with magnesium and manganese.Results suggest that plant breeding and production site selection could enrich lentil nutrient concentrations to help combat malnutrition in the world.Item Evaluation of Fall Seeded Winter Pea and Lentil Line Performance (2004)(Central Agricultural Research Center, 2004) Wichman, David M.; Chen, Chengci; McPhee, K.; Muehlbauer, F.J.; Neill, Karnes E.; Short, R.W.; Vavrovsky, JoeThis paper evaluates winter hardiness of fall seeded winter dry pea and lentil lines. All winter pea lines exhibited good winter hardiness, with the trial having an average of 106% survivability (Table 3). No differences were observed among the winter pea lines. The winter lentil lines did not exhibit good winter survival as the trial averaged only 69.8% survival (Table 4). Line LC9978094 had the highest survival rating (88.5%), but was not significantly higher than lines LC9979120, WA8649041 and LC9978057.Item Evaluation of Fall Seeded Winter Pea and Lentil Line Performance (2005)(Central Agricultural Research Center, 2005) Wichman, David M.; Chen, Chengci; McPhee, K.; Muehlbauer, F.J.; Neill, Karnes E.; Short, R.W.; Vavrovsky, JoeThis paper evaluates winter hardiness of fall seeded winter dry pea and lentil lines. All winter pea lines exhibited good winter hardiness, having a spring stand of 7.1 plants ft-2 or 95% of the target seeding rate (7.4 plants ft-2; Table 3). No differences were observed among the winter pea lines. The winter lentil lines exhibit slightly poorer winter survival than the winter pea lines. The trial had an average spring stand of 9.8 plants ft-2 or 89% of the target seeding rate (11.1 plants ft-2; Table 4).Item Evaluation of Fall Seeded Winter Pea and Lentil Line Performance (Western Regional Winter Dry Pea and Lentil Evaluation Trials) (2007)(Central Agricultural Research Center, 2007) Wichman, David M.; Chen, Chengci; Neill, Karnes E.; McPhee, K.; Short, R.W.; Vavrovsky, JoeThis paper evaluates winter hardiness of fall seeded winter dry pea and lentil lines. A difference in spring stand (visual evaluation) amongst the winter pea lines was exhibited, with Granger Austrian winter pea having the best stand, but was significantly similar to five other lines (Table 3). Upon visual observations, large differences in winter survival among the winter lentil lines were observed (Table 4). Turkish-type (“T”) lines LC02600449T and LC03600295T had the poorest spring stands with an average score of 1.6 and 1.8 (out of possible of 5), respectively.Item Evaluation of Fall Seeded Winter Pea and Lentil Line Performance (Western Regional Winter Dry Pea and Lentil Evaluation Trials) (2008)(Central Agricultural Research Center, 2008) Wichman, David M.; Chen, Chengci; Neill, Karnes E.; McPhee, K.; Short, R.W.; Vavrovsky, JoeThis paper evaluates winter hardiness of fall seeded winter dry pea and lentil lines. A difference in spring stand (visual evaluation) amongst the winter pea lines was exhibited, with Granger Austrian winter pea having the best stand, but was significantly similar to five other lines (Table 3). Upon visual observations, large differences in winter survival among the winter lentil lines were observed (Table 4). Turkish-type (“T”) lines LC02600449T and LC03600295T had the poorest spring stands with an average score of 1.6 and 1.8 (out of possible of 5), respectively.Item Evaluation of Fall-Seeded Winter Pea and Lentil Cultivars (2003)(Central Agricultural Research Center, 2003) Chen, Chengci; Wichman, David M.; McPhee, K.; Muehlbauer, F.J.; Neill, Karnes E.; Vavrovsky, JoeThis paper evaluates winter survival, performance, and yield of winter pea and lentil variety/breeding lines for grain and forage production potentials in Central Montana's dryland environment. Table 3 and Table 4 show winter survival, biomass and seed yield of each variety/breeding line of pea and lentil, respectively. Due to the dry summer in 2003, the yields of pea and lentil were generally low and little difference among the breeding lines of peas. Several lentil breeding lines performed superior than others (Table 4).Item Intensification of Dryland Cropping Systems for Bio-feedstock Production: Energy Analysis of Camelina(2015-12) Keshavarz-Afshar, Reza; Chen, ChengciCamelina (Camelina sativa L. Crantz), as a bioenergy and bio-product feedstock, may be grown as a rotation crop in the wheat-based cropping system to increase land use efficiency in the Northern Great Plains (NGP). In this study, which was conducted from 2008 to 2011 in central Montana, we evaluated the energy balance of three 2-year cop rotational sequences that included camelina-winter wheat (Triticum aestivum L.) (CAM-WW) and barley (Hordeum vulgare L.)-winter wheat (BAR-WW) compared with a traditional fallow-winter wheat (FAL-WW) rotation. Results indicated that 52 and 57 % more energy input was invested in CAM-WW and BAR-WW compared to FAL-WW system (9182 MJ ha−1), respectively. In all rotations, nitrogen fertilizer was the most energy-consuming input and accounted for 76, 68, and 69 % of the total energy used in wheat, barley, and camelina production, respectively. Averaged over 3 years, CAM-WW and BAR-WW systems yielded 34 and 29 % greater gross energy output compared with FAL-WW. The CAM-WW and BAR-WW also outperformed FAL-WW by 30 and 6 % in terms of net energy output. No significant differences in energy efficiency were found between the FAL-WW and CAM-WW systems. Taking into account of the greater net energy as well as similar values of energy use efficiency, the CAM-WW system performed better than the traditional FAL-WW system under rainfed conditions in central Montana. There is a good potential to improve the energy efficiency of the CAM-WW cropping system (by more than 26 %) through refinement of agronomic practices, mainly nitrogen fertilization and herbicide application, which can further enhance the sustainability of camelina feedstock production.Item Intercropping chickpea–flax for yield and disease management(Wiley, 2023-03) Zhou, Yi; Chen, Chengci; Franck, William L.; Khan, Qasim; Franck, Sooyoung; Crutcher, Frankie K.; McVay, Kent; McPhee, KevinAscochyta blight (caused by Ascochyta rabiei) is a primary concern of chickpea production worldwide. Intercropping chickpea with a non-host crop has the potential to suppress this disease and improve resource use efficiency for enhanced crop yield. This study aimed to evaluate the effects of seeding rate and row configuration of chickpea (Cicer arietinum L.)–flax (Linum usitatissimum L) intercropping on (1) yield and seed quality, (2) disease incidence and severity of Ascochyta blight of chickpea, and (3) land productivity of this intercropping system. Field trials were conducted at the Eastern Agricultural Research Center, Sidney, MT, and the Southern Agricultural Research Center, Huntley, MT, in 2020 and 2021. Chickpea was planted with flax in four intercropping configurations (70% chickpea–30% flax in mixed rows, 50% chickpea–50% flax in alternate rows, 50% chickpea–50% flax in mixed rows, and 30% chickpea–70% flax in mixed rows). Chickpea yield decreased with increased flax proportion in the mixed rows intercrop. Flax displayed higher competitiveness than chickpea, resulting in decreased yield and protein concentration in chickpea but increased yield and protein content in flax. Land equivalent ratio of intercropping was greater than one, showing improved land productivity (2%–23% greater than monocropping). Intercropping reduced Ascochyta blight disease incidence and severity; the 50% chickpea–50% flax and 30% chickpea–70% flax intercropping configurations could reduce the disease severity to 50% (in Huntley) and 67% (in Sidney) of that in the monocropping. These results indicated that seed ratio and planting configurations of chickpea–flax intercropping may be manipulated to increase land use efficiency and reduce Ascochyta blight in chickpea. Canadian Development Center ‘CDC Leader’ yielded greater than Royal in the higher disease pressure environment in Huntley indicated that selection of disease resistant cultivars is important for managing Ascochyta blight in chickpea.Item Intercropping chickpea-flax for yield and disease management(Wiley, 2022-12) Zhou, Yi; Chen, Chengci; Franck, William L.; Khan, Qasim; Franck, Sooyoung; Crutcher, Frankie K.; McVay, Kent; McPhee, KevinAscochyta blight (caused by Ascochyta rabiei) is a primary concern of chickpea production worldwide. Intercropping chickpea with a non-host crop has the potential to suppress this disease and improve resource use efficiency for enhanced crop yield. This study aimed to evaluate the effects of seeding rate and row configuration of chickpea (Cicer arietinum, L.)-flax (Linum usitatissimum, L) intercropping on 1) yield and seed quality, 2) disease incidence and severity of Ascochyta blight of chickpea, and 3) land productivity of this intercropping system. Field trials were conducted at the Eastern Agricultural Research Center (EARC), Sidney, MT, and the Southern Agricultural Research Center (SARC), Huntley, MT, in 2020 and 2021. Chickpea was planted with flax in 4 intercropping configurations (70% chickpea – 30% flax in mixed rows, 50% chickpea – 50% flax in alternate rows, 50% chickpea – 50% flax in mixed rows, and 30% chickpea – 70% flax in mixed rows). Chickpea yield decreased with increased flax proportion in the mixed rows intercrop. Flax displayed higher competitiveness than chickpea, resulting in decreased yield and protein concentration in chickpea but increased yield and protein content in flax. Land equivalent ratio (LER) of intercropping was greater than 1, showing improved land productivity (2% -23% greater than monocropping). Intercropping reduced Ascochyta blight disease incidence and severity; the 50% chickpea – 50% flax and 30% chickpea – 70% flax intercropping configurations could reduce the disease severity to 50% (in Hunley) and 67% (in Sidney) of that in the monocropping. These results indicated that seed ratio and planting configurations of chickpea-flax intercropping may be manipulated to increase land use efficiency and reduce Ascochyta blight in chickpea. CDC Leader yielded greater than Royal in the higher disease pressure environment in Huntley indicated that selection of disease resistant cultivar is important for managing Ascochyta blight on chickpea.Item Lentil Response to Nitrogen Application and Rhizobia Inoculation(2016-11) Huang, Jinwen; Keshavarz-Afshar, Reza; Chen, ChengciLentils (Lens culinaris L.) are an important component of the dryland farming systems in the western USA. Optimum nitrogen (N) management can enhance yield and quality of lentils. We conducted a field (at two locations, one with previous history of lentil and the other one without lentil history) and a greenhouse study to evaluate response of lentil to the application of rhizobium inoculant and starter N (control, 22 kg N ha(-1) in the form of urea [U], 22 kg N ha(-1) in the form of slow-release or environmentally safe nitrogen [ESN], and 22 kg N ha(-1) U + 22 kg N ha(-1) ESN). In both, the field and the laboratory studies, lentil yield did not respond positively to the experimental treatments. Lentil average yield was 1216 and 1420 kg ha(-1) at the field condition. In this rain-fed system, lentil yield was mainly limited by moisture availability, and the application of an external N did not contribute to the yield enhancement. Both of these treatments, however, increased protein content. Compared to the control, the application of rhizobium plus U and ESN enhanced protein content by about 34% (from 23.1 to 30.9%). The application of U+ ESN also considerably increased postharvest residual nitrate (NO3)-N in the soil, which can be easily leached and creates environmental pollution. Briefly, the application of U+ ESN increases lentil protein content, but more efforts are needed to optimize N management in lentils in order to reduce the environmental concerns in the shallow soil.Item Narrow-leaf Lupine Variety Evaluation and Agronomic Studies (2002)(Central Agricultural Research Center, 2002) Chen, Chengci; Neill, Karnes E.; Wichman, David M.This report evaluates narrow-leaf lupine varieties for potential adaptation to central Montana and determines optimum seeding date and rate for this crop in central Montana. Same as the variety evaluation trial, Lupin-M1 kept green throughout the summer, we did not harvest this variety. Furthermore, there was herbicide damage caused by the residual herbicide from previous crop (it was suspected to be Tordon). The damage was especially severe in Replicate 1, therefore, only the replicate 2 and 3 were harvested. Data from two varieties and two replicates are presented as following. Yields were generally lower than the variety evaluation trial. There was no significant different between the drill types and varieties (Fig. 1). Seeding date and rate significantly affected lupine seed yield (Fig.2). The second seeding date (1 May) had higher yield than the first (11 April) and the third (29 May) seeding dates. Yield increased significantly when seeding rate increased from 100 la/A to 120 lb/A, but there was no difference when seeding rate increased from 80 and 100 and when seeding rate increased from 120 to 160 lb/a(Fig.2).