Scholarly Work - Ecology

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8716

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Spatial Risk Effects From Lions Compound Impacts of Prey Depletion on African Wild Dogs
    (Wiley, 2024-10) Goodheart, Ben; Creel, Scott; Schuette, Paul; Droge, Egil; Becker, Justine A.; Banda, Kambwiri; Kusler, Anna; Matsushima, Stephi; Banda, Kachama; Kabwe, Ruth; Donald, Will; Reyes de Merkle, Johnathan; Kaluka, Adrian; Chifunte, Clive; Becker, Matthew S.
    Prey depletion threatens many carnivore species across the world and can especially threaten low-density subordinate competitors, particularly if subordinates are limited to low densities by their dominant competitors. Understanding the mechanisms that drive responses of carnivore density to prey depletion is not only crucial for conservation but also elucidates the balance between top-down and bottom-up limitations within the large carnivore guild. To avoid predation, competitively subordinate African wild dogs typically avoid their dominant competitors (lions) and the prey rich areas they are associated with, but no prior research has tested whether this pattern persists in ecosystems with anthropogenically-reduced prey density, and reduced lion density as a result. We used spatial data from wild dogs and lions in the prey-depleted Greater Kafue Ecosystem to test if wild dogs continue to avoid lions (despite their low density), and consequently avoid habitats with higher densities of their dominant prey species. We found that although lion density is 3X lower than comparable ecosystems, wild dogs continue to strongly avoid lions, and consequently avoid habitats associated with their two most important prey species. Although the density of lions in the GKE is low due to prey depletion, their competitive effects on wild dogs remain strong. These effects are likely compounded by prey-base homogenization, as lions in the GKE now rely heavily on the same prey preferred by wild dogs. These results suggest that a reduction in lion density does not necessarily reduce competition, and helps explain why wild dogs decline in parallel with their dominant competitors in ecosystems suffering from anthropogenic prey depletion. Protecting prey populations within the few remaining strongholds for wild dogs is vitally important to avoid substantial population declines. Globally, understanding the impacts of prey depletion on carnivore guild dynamics should be an increasingly important area of focus for conservation.
  • Thumbnail Image
    Item
    Predation strongly limits demography of a keystone migratory herbivore in a recovering transfrontier ecosystem
    (Wiley, 2022-10) Watson, Fred; Becker, Matthew S.; Smit, Daan; Droge, Egil; Mukula, Teddy; Martens, Sandra; Mwaba, Shadrach; Christianson, David; Creel, Scott; Brennan, Angela; M'soka, Jassiel; Gaylard, Angela; Simukonda, Chuma; Nyirenda, Moses; Mayani, Bridget
    Large herbivore migrations are imperiled globally; however the factors limiting a population across its migratory range are typically poorly understood. Zambia's Greater Liuwa Ecosystem (GLE) contains one of the largest remaining blue wildebeest (Connochaetes taurinus taurinus) migrations, yet the population structure, vital rates, and limiting factors are virtually unknown. We conducted a long-term demographic study of GLE wildebeest from 2012 to 2019 of 107 collared adult females and their calves, 7352 herd observations, 12 aerial population surveys, and concurrent carnivore studies. We applied methods of vital rate estimation and survival analysis within a Bayesian estimation framework. From herd composition observations, we estimated rates of fecundity, first-year survival, and recruitment as 68%, 56%, and 38% respectively, with pronounced interannual variation. Similar rates were estimated from calf-detections with collared cows. Adult survival rates declined steadily from 91% at age 2 years to 61% at age 10 years thereafter dropping more sharply to 2% at age 16 years. Predation, particularly by spotted hyena, was the predominant cause of death for all wildebeest ages and focused on older animals. Starvation only accounted for 0.8% of all unbiased known natural causes of death. Mortality risk differed substantially between wet and dry season ranges, reflecting strong spatio-temporal differences in habitat and predator densities. There was substantial evidence that mortality risk to adults was 27% higher in the wet season, and strong evidence that it was 45% higher in the migratory range where predator density was highest. The estimated vital rates were internally consistent, predicting a stable population trajectory consistent with aerial estimates. From essentially zero knowledge of GLE wildebeest dynamics, this work provides vital rates, age structure, limiting factors, and a plausible mechanism for the migratory tendency, and a robust model-based foundation to evaluate the effects of potential restrictions in migratory range, climate change, predator–prey dynamics, and poaching.
  • Thumbnail Image
    Item
    Assessing the Performance of Index Calibration Survey Methods to Monitor Populations of Wide‐ranging Low‐density Carnivores
    (2020-03) Droge, Egil; Creel, Scott; Becker, Matthew S.; Loveridge, Andrew J.; Sousa, Lara L.; Macdonald, David W.
    Apex carnivores are wide‐ranging, low‐density, hard to detect, and declining throughout most of their range, making population monitoring both critical and challenging. Rapid and inexpensive index calibration survey (ICS) methods have been developed to monitor large African carnivores. ICS methods assume constant detection probability and a predictable relationship between the index and the actual population of interest. The precision and utility of the resulting estimates from ICS methods have been questioned. We assessed the performance of one ICS method for large carnivores—track counts—with data from two long‐term studies of African lion populations. We conducted Monte Carlo simulation of intersections between transects (road segments) and lion movement paths (from GPS collar data) at varying survey intensities. Then, using the track count method we estimated population size and its confidence limits. We found that estimates either overstate precision or are too imprecise to be meaningful. Overstated precision stemmed from discarding the variance from population estimates when developing the method and from treating the conversion from tracks counts to population density as a back‐transformation, rather than applying the equation for the variance of a linear function. To effectively assess the status of species, the IUCN has set guidelines, and these should be integrated in survey designs. We propose reporting the half relative confidence interval width (HRCIW) as an easily calculable and interpretable measure of precision. We show that track counts do not adhere to IUCN criteria, and we argue that ICS methods for wide‐ranging low‐density species are unlikely to meet those criteria. Established, intensive methods lead to precise estimates, but some new approaches, like short, intensive, (spatial) capture–mark–recapture (CMR/SECR) studies, aided by camera trapping and/or genetic identification of individuals, hold promise. A handbook of best practices in monitoring populations of apex carnivores is strongly recommended.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.