Scholarly Work - Ecology

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8716

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    The ghosts of ecosystem engineers: Legacy effects of biogenic modifications
    (Wiley, 2022) Albertson, Lindsey K.; Sklar, Leonard S.; Tumolo, Benjamin B.; Cross, Wyatt F.; Collins, Scott F.; Woods, H. Arthur
    Ecosystem engineers strongly influence the communities in which they live by modifying habitats and altering resource availability. These biogenic changes can persist beyond the presence of the engineer, and such modifications are known as ecosystem engineering legacy effects. Although many authors recognize ecosystem engineering legacies, and some case studies quantify the effects of legacies, few general frameworks describe their causes and consequences across species or ecosystem types. Here, we synthesize evidence for ecosystem engineering legacies and describe how consideration of key traits of engineers improves understanding of which engineers are likely to leave persistent biogenic modifications. Our review demonstrates that engineering legacies are ubiquitous, with substantial effects on individuals, communities and ecosystem processes. Attributes that may promote the persistence of influential legacies relate to an engineer's traits, including its body size, life span and living strategy (individual, conspecific group or collection of multiple co-occurring species). Additional lines of inquiry, such as how the recipients respond (e.g. density or richness) or the mechanism of engineering (e.g. burrowing or structure building), should be included in future ecosystem engineering legacy research. Understanding patterns of these persistent effects of ecosystem engineers and evaluating the consequences of losing them is an important area of research needed for understanding long-term ecological responses to global change and biodiversity loss.
  • Thumbnail Image
    Item
    Occupied and abandoned structures from ecosystem engineering differentially facilitate stream community colonization
    (2019-05) Tumolo, Benjamin B.; Albertson, Lindsey K.; Cross, Wyatt F.; Daniels, Melinda D.; Sklar, Leonard S.
    Ecosystem engineers transform habitats in ways that facilitate a diversity of species; however, few investigations have isolated short‐term effects of engineers from the longer‐term legacy effects of their engineered structures. We investigated how initial presence of net‐spinning caddisflies (Hydropsychidae) and their structures that provide and modify habitat differentially influence benthic community colonization in a headwater stream by conducting an in situ experiment that included three treatments: (1) initial engineering organism with its habitat modification structure occupied (hereafter caddisfly); (2) initial habitat modification structure alone (hereafter silk); and (3) a control with the initial absence of both engineer and habitat modification structure (hereafter control). Total invertebrate colonization density and biomass was higher in caddisfly and silk treatments compared to controls (~25% and 35%, respectively). However, finer‐scale patterns of taxonomy revealed that density for one of the taxa, Chironomidae, was ~19% higher in caddisfly compared to silk treatments. Additionally, conspecific biomass was higher by an average of 50% in silk treatments compared to controls; however, no differences in Hydropsyche sp. biomass were detected between caddisfly treatments and controls, indicating initially abandoned silk structures elevated conspecific biomass. These findings suggest that the positive effects of the habitat modification structures that were occupied for the entirety of the experiment may outweigh any potential negative impacts from the engineer, which is known to be territorial. Importantly, these results reveal that the initial presence of the engineer itself may be important in maintaining the ecological significance of habitat modifications. Furthermore, the habitat modifications that were initially abandoned (silk) had similar positive effects on conspecific biomass compared to caddisfly treatments, suggesting legacy effects of these engineering structures may have pertinent intraspecific feedbacks of the same magnitude to that of occupied habitat modifications. Elucidating how engineers and their habitat modifications differentially facilitate organisms will allow for a clearer mechanistic understanding of the extent to which animal engineers and their actions influence aspects of community organization such as colonization.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.