Scholarly Work - Chemistry & Biochemistry

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8714

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Metalloproteomics Reveals Multi-Level Stress Response in Escherichia coli When Exposed to Arsenite
    (MDPI AG, 2024-09) Larson, James; Sather, Brett; Wang, Lu; Westrum, Jade; Tokmina-Lukaszewska, Monika; Pauley, Jordan; Copié, Valérie; McDermott, Timothy R.; Bothner, Brian
    The arsRBC operon encodes a three-protein arsenic resistance system. ArsR regulates the transcription of the operon, while ArsB and ArsC are involved in exporting trivalent arsenic and reducing pentavalent arsenic, respectively. Previous research into Agrobacterium tumefaciens 5A has demonstrated that ArsR has regulatory control over a wide range of metal-related proteins and metabolic pathways. We hypothesized that ArsR has broad regulatory control in other Gram-negative bacteria and set out to test this. Here, we use differential proteomics to investigate changes caused by the presence of the arsR gene in human microbiome-relevant Escherichia coli during arsenite (AsIII) exposure. We show that ArsR has broad-ranging impacts such as the expression of TCA cycle enzymes during AsIII stress. Additionally, we found that the Isc [Fe-S] cluster and molybdenum cofactor assembly proteins are upregulated regardless of the presence of ArsR under these same conditions. An important finding from this differential proteomics analysis was the identification of response mechanisms that were strain-, ArsR-, and arsenic-specific, providing new clarity to this complex regulon. Given the widespread occurrence of the arsRBC operon, these findings should have broad applicability across microbial genera, including sensitive environments such as the human gastrointestinal tract.
  • Thumbnail Image
    Item
    Impact of mineral and non-mineral sources of iron and sulfur on the metalloproteome of Methanosarcina barkeri
    (American Society for Microbiology, 2024-07) Larson, James; Tokmina-Lukaszewska, Monika; Payne, Devon; Spietz, Rachel L.; Fausset, Hunter; Alam, Md Gahangir; Brekke, Brooklyn K.; Pauley, Jordan; Hasenoehrl, Ethan J.; Shepard, Eric M.; Boyd, Eric S.; Bothner, Brian
    Methanogens often inhabit sulfidic environments that favor the precipitation of transition metals such as iron (Fe) as metal sulfides, including mackinawite (FeS) and pyrite (FeS2). These metal sulfides have historically been considered biologically unavailable. Nonetheless, methanogens are commonly cultivated with sulfide (HS-) as a sulfur source, a condition that would be expected to favor metal precipitation and thus limit metal availability. Recent studies have shown that methanogens can access Fe and sulfur (S) from FeS and FeS2 to sustain growth. As such, medium supplied with FeS2 should lead to higher availability of transition metals when compared to medium supplied with HS-. Here, we examined how transition metal availability under sulfidic (i.e., cells provided with HS- as sole S source) versus non-sulfidic (cells provided with FeS2 as sole S source) conditions impact the metalloproteome of Methanosarcina barkeri Fusaro. To achieve this, we employed size exclusion chromatography coupled with inductively coupled plasma mass spectrometry and shotgun proteomics. Significant changes were observed in the composition and abundance of iron, cobalt, nickel, zinc, and molybdenum proteins. Among the differences were alterations in the stoichiometry and abundance of multisubunit protein complexes involved in methanogenesis and electron transport chains. Our data suggest that M. barkeri utilizes the minimal iron-sulfur cluster complex and canonical cysteine biosynthesis proteins when grown on FeS2 but uses the canonical Suf pathway in conjunction with the tRNA-Sep cysteine pathway for iron-sulfur cluster and cysteine biosynthesis under sulfidic growth conditions.
  • Thumbnail Image
    Item
    Proteomic Analysis of Methanococcus voltae Grown in the Presence of Mineral and Nonmineral Sources of Iron and Sulfur
    (American Society for Microbiology, 2022-08) Steward, Katherine F.; Payne, Devon; Kincannon, Will; Johnson, Christina; Lensing, Malachi; Fausset, Hunter; Németh, Brigitta; Shepard, Eric M.; Broderick, William E.; Broderick, Joan B.; Dubois, Jen; Bothner, Brian
    Clusters of iron and sulfur are key components of the active sites of enzymes that facilitate microbial conversion of light or electrical energy into chemical bonds. The proteins responsible for transporting iron and sulfur into cells and assembling these elements into metal clusters are not well understood.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.