Scholarly Work - Chemistry & Biochemistry

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8714

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Impact of mineral and non-mineral sources of iron and sulfur on the metalloproteome of Methanosarcina barkeri
    (American Society for Microbiology, 2024-07) Larson, James; Tokmina-Lukaszewska, Monika; Payne, Devon; Spietz, Rachel L.; Fausset, Hunter; Alam, Md Gahangir; Brekke, Brooklyn K.; Pauley, Jordan; Hasenoehrl, Ethan J.; Shepard, Eric M.; Boyd, Eric S.; Bothner, Brian
    Methanogens often inhabit sulfidic environments that favor the precipitation of transition metals such as iron (Fe) as metal sulfides, including mackinawite (FeS) and pyrite (FeS2). These metal sulfides have historically been considered biologically unavailable. Nonetheless, methanogens are commonly cultivated with sulfide (HS-) as a sulfur source, a condition that would be expected to favor metal precipitation and thus limit metal availability. Recent studies have shown that methanogens can access Fe and sulfur (S) from FeS and FeS2 to sustain growth. As such, medium supplied with FeS2 should lead to higher availability of transition metals when compared to medium supplied with HS-. Here, we examined how transition metal availability under sulfidic (i.e., cells provided with HS- as sole S source) versus non-sulfidic (cells provided with FeS2 as sole S source) conditions impact the metalloproteome of Methanosarcina barkeri Fusaro. To achieve this, we employed size exclusion chromatography coupled with inductively coupled plasma mass spectrometry and shotgun proteomics. Significant changes were observed in the composition and abundance of iron, cobalt, nickel, zinc, and molybdenum proteins. Among the differences were alterations in the stoichiometry and abundance of multisubunit protein complexes involved in methanogenesis and electron transport chains. Our data suggest that M. barkeri utilizes the minimal iron-sulfur cluster complex and canonical cysteine biosynthesis proteins when grown on FeS2 but uses the canonical Suf pathway in conjunction with the tRNA-Sep cysteine pathway for iron-sulfur cluster and cysteine biosynthesis under sulfidic growth conditions.
  • Thumbnail Image
    Item
    Arsenic Exposure Causes Global Changes in the Metalloproteome of Escherichia coli
    (MDPI AG, 2023-02) Larson, James; Tokmina-Lukaszewska, Monika; Fausset, Hunter; Spurzem, Scott; Cox, Savannah; Cooper, Gwendolyn; Copié, Valérie; Bothner, Brian
    Arsenic is a toxic metalloid with differential biological effects, depending on speciation and concentration. Trivalent arsenic (arsenite, AsIII) is more toxic at lower concentrations than the pentavalent form (arsenate, AsV). In E. coli, the proteins encoded by the arsRBC operon are the major arsenic detoxification mechanism. Our previous transcriptional analyses indicate broad changes in metal uptake and regulation upon arsenic exposure. Currently, it is not known how arsenic exposure impacts the cellular distribution of other metals. This study examines the metalloproteome of E. coli strains with and without the arsRBC operon in response to sublethal doses of AsIII and AsV. Size exclusion chromatography coupled with inductively coupled plasma mass spectrometry (SEC-ICPMS) was used to investigate the distribution of five metals (56Fe, 24Mg, 66Zn, 75As, and 63Cu) in proteins and protein complexes under native conditions. Parallel analysis by SEC-UV-Vis spectroscopy monitored the presence of protein cofactors. Together, these data reveal global changes in the metalloproteome, proteome, protein cofactors, and soluble intracellular metal pools in response to arsenic stress in E. coli. This work brings to light one outcome of metal exposure and suggests that metal toxicity on the cellular level arises from direct and indirect effects.
  • Thumbnail Image
    Item
    Proteomic Analysis of Methanococcus voltae Grown in the Presence of Mineral and Nonmineral Sources of Iron and Sulfur
    (American Society for Microbiology, 2022-08) Steward, Katherine F.; Payne, Devon; Kincannon, Will; Johnson, Christina; Lensing, Malachi; Fausset, Hunter; Németh, Brigitta; Shepard, Eric M.; Broderick, William E.; Broderick, Joan B.; Dubois, Jen; Bothner, Brian
    Clusters of iron and sulfur are key components of the active sites of enzymes that facilitate microbial conversion of light or electrical energy into chemical bonds. The proteins responsible for transporting iron and sulfur into cells and assembling these elements into metal clusters are not well understood.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.