Scholarly Work - Chemistry & Biochemistry

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8714

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    The catalytic mechanism of electron bifurcating electron transfer flavoproteins (ETFs) involves an intermediary complex with NAD
    (2018-12) Schut, Gerrit J.; Mohamed-Raseek, Nishya; Tokmina-Lukaszewska, Monika; Mulder, David W.; Nguyen, Diep M. N.; Lipscomb, Gina L.; Hoben, John P.; Patterson, Angela; Lubner, Carolyn E.; King, Paul W.; Peters, John W.; Bothner, Brian; Miller, Anne-Frances; Adams, Michael W. W.
    Electron bifurcation plays a key role in anaerobic energy metabolism but it is a relatively new discovery and only limited mechanistic information is available on the diverse enzymes that employ it. Herein, we focused on the bifurcating electron transfer flavoprotein (ETF) from the hyperthermophilic archaeon Pyrobaculum aerophilum The EtfABCX enzyme complex couples NADH oxidation to the endergonic reduction of ferredoxin and exergonic reduction of menaquinone. We developed a model for the enzyme structure by using non-denaturing MS, cross-linking and homology modeling in which EtfA, B, and C each contained FAD, whereas EtfX contained two [4Fe-4S] clusters. On the basis of analyses using transient absorption, EPR and optical titrations with NADH or inorganic reductants with and without NAD+, we propose a catalytic cycle involving formation of an intermediary NAD+-bound complex. A charge transfer signal revealed an intriguing interplay of flavin semiquinones and a protein conformational change that gated electron transfer between the low- and high-potential pathways. We found that despite a common bifurcating flavin site, the proposed EtfABCX catalytic cycle is distinct from that of the genetically-unrelated bifurcating NADH-dependent ferredoxin NADP+ oxidoreductase (NfnI). The two enzymes particularly differed in the role of NAD+, the resting and bifurcating-ready states of the enzymes, how electron flow is gated, and in the two two-electron cycles constituting the overall four-electron reaction. We conclude that P. aerophilum EtfABCX provides a model catalytic mechanism that builds on and extends previous studies of related bifurcating ETF\'s and can be applied to the large bifurcating ETF family.
  • Thumbnail Image
    Item
    H/D exchange mass spectrometry and statistical coupling analysis reveal a role for allostery in a ferredoxin-dependent bifurcating transhydrogenase catalytic cycle
    (2018-01) Berry, Luke; Poudel, Saroj; Tokmina-Lukaszewska, Monika; Colman, Daniel R.; Nguyen, Diep M. N.; Schut, Gerrit J.; Adams, Michael W. W.; Peters, John W.; Boyd, Eric S.; Bothner, Brian
    Recent investigations into ferredoxin-dependent transhydrogenases, a class of enzymes responsible for electron transport, have highlighted the biological importance of flavin-based electron bifurcation (FBEB). FBEB generates biomolecules with very low reduction potential by coupling the oxidation of an electron donor with intermediate potential to the reduction of high and low potential molecules. Bifurcating systems can generate biomolecules with very low reduction potentials, such as reduced ferredoxin (Fd), from species such as NADPH. Metabolic systems that use bifurcation are more efficient and confer a competitive advantage for the organisms that harbor them. Structural models are now available for two NADH-dependent ferredoxin-NADP(+) oxidoreductase (Nfn) complexes. These models, together with spectroscopic studies, have provided considerable insight into the catalytic process of FBEB. However, much about the mechanism and regulation of these multi-subunit proteins remains unclear. Using hydrogen/deuterium exchange mass spectrometry (HDX-MS) and statistical coupling analysis (SCA), we identified specific pathways of communication within the model FBEB system, Nfn from Pyrococus furiosus, under conditions at each step of the catalytic cycle. HDX-MS revealed evidence for allosteric coupling across protein subunits upon nucleotide and ferredoxin binding. SCA uncovered a network of co-evolving residues that can provide connectivity across the complex. Together, the HDX-MS and SCA data show that protein allostery occurs across the ensemble of iron-sulfur cofactors and ligand binding sites using specific pathways that connect domains allowing them to function as dynamically coordinated units.
  • Thumbnail Image
    Item
    Defining Electron Bifurcation in the Electron Transferring Flavoprotein Family
    (2017-11) Garcia Costas, Amaya M.; Poudel, Saroj; Miller, Anne-Frances; Schut, Gerrit J.; Ledbetter, Rhesa N.; Fixen, Kathryn R.; Seefeldt, Lance C.; Adams, Michael W. W.; Harwood, Caroline S.; Boyd, Eric S.; Peters, John W.
    Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low and high potential electrons. It is the third recognized form of energy conservation in biology and has recently been described in select electron transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via ETF quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer as well as a non-redox active adenosine monophosphate (AMP). However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the AMP. To expand our understanding of the functional variety and metabolic significance of Etfs and to identify amino acid sequence motifs that potentially enable electron bifurcation, we compiled 1,314 Etf protein sequences from genome sequence databases and subjected them to informatics and structural analyses. Etfs were identified in diverse archaea and bacteria, and these clustered into five distinct well-supported groups based on amino acid sequences. Gene neighborhood analyses indicate that these Etf group designations largely correspond to putative differences in functionality. Etfs with the demonstrated ability to bifurcate were found to form one group, suggesting distinct and conserved amino acid sequence motifs enable this capability. Indeed, structural modeling and sequence alignments revealed that identifying residues occur in the NADH and FAD-binding regions of bifurcating Etfs. Collectively, a new classification scheme is presented for Etf proteins that demarcates putative bifurcating vs. non-bifurcating members and suggests that Etf mediated bifurcation is associated with surprisingly diverse enzymes.IMPORTANCE Electron bifurcation has recently been recognized as an electron transfer mechanism used by microorganisms to maximize energy conservation. Bifurcating enzymes couple thermodynamically unfavorable reactions with thermodynamically favorable reactions in an overall spontaneous process. Here we show that the electron transferring flavoprotein (Etf) enzyme family exhibits far greater diversity than previously recognized and we provide a phylogenetic analysis that clearly delineates bifurcating and non-bifurcating members of this family. Structural modeling of proteins within these groups reveals key differences between the bifurcating and non-bifurcating Etfs.
  • Thumbnail Image
    Item
    [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation
    (2014-11) Peters, John W.; Schut, Gerrit J.; Boyd, Eric S.; Mulder, David W.; Shepard, Eric M.; Broderick, Joan B.; King, Paul W.; Adams, Michael W. W.
    The [FeFe]- and [NiFe]-hydrogenases catalyze the formal interconversion between hydrogen and protons and electrons, possess characteristic non-protein ligands at their catalytic sites and thus share common mechanistic features. Despite the similarities between these two types of hydrogenases, they clearly have distinct evolutionary origins and likely emerged from different selective pressures. [FeFe]-hydrogenases are widely distributed in fermentative anaerobic microorganisms and likely evolved under selective pressure to couple hydrogen production to the recycling of electron carriers that accumulate during anaerobic metabolism. In contrast, many [NiFe]-hydrogenases catalyze hydrogen oxidation as part of energy metabolism and were likely key enzymes in early life and arguably represent the predecessors of modern respiratory metabolism. Although the reversible combination of protons and electrons to generate hydrogen gas is the simplest of chemical reactions, the [FeFe]- and [NiFe]-hydrogenases have distinct mechanisms and differ in the fundamental chemistry associated with proton transfer and control of electron flow that also help to define catalytic bias. A unifying feature of these enzymes is that hydrogen activation itself has been restricted to one solution involving diatomic ligands (carbon monoxide and cyanide) bound to an Fe ion. On the other hand, and quite remarkably, the biosynthetic mechanisms to produce these ligands are exclusive to each type of enzyme. Furthermore, these mechanisms represent two independent solutions to the formation of complex bioinorganic active sites for catalyzing the simplest of chemical reactions, reversible hydrogen oxidation. As such, the [FeFe]- and [NiFe]-hydrogenases are arguably the most profound case of convergent evolution. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.