Scholarly Work - Chemistry & Biochemistry
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8714
Browse
1 results
Search Results
Item Methodological Studies of the Mechanism of Anion Insertion in Nanometer‐Sized Carbon Micropores(Wiley, 2022-11) Welty, Connor; Taylor, Erin E.; Posey, Sadie; Vailati, Patric; Kravchyk, Kostiantyn V.; Kovalenko, Maksym V.; Stadie, Nicholas P.Dual-ion hybrid capacitors (DIHCs) are a promising class of electrochemical energy storage devices intermediate between batteries and supercapacitors, exhibiting both high energy and power density, and generalizable across wide chemistries beyond lithium. In this study, a model carbon framework material with a periodic structure containing exclusively 1.2 nm width pores, zeolite-templated carbon (ZTC), was investigated as the positive electrode for the storage of a range of anions relevant to DIHC chemistries. Screening experiments were carried out across 21 electrolyte compositions within a common stable potential window of 3.0–4.0 V vs. Li/Li+ to determine trends in capacity as a function of anion and solvent properties. To achieve fast rate capability, a binary solvent balancing a high dielectric constant with a low viscosity and small molecular size was used; optimized full-cells based on LiPF6 in binary electrolyte exhibited 146 Wh kg−1 and >4000 W kg−1 energy and power densities, respectively.