Scholarly Work - Chemistry & Biochemistry
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8714
Browse
2 results
Search Results
Item Pseudomonas aeruginosa Planktonic- and Biofilm-Conditioned Media Elicit Discrete Metabolic Responses in Human Macrophages(MDPI AG, 2020-10) Fuchs, Amanda; Miller, Isaac; Schiller, Sage; Ammons, Mary; Eilers, Brian; Tripet, Brian; Copie, ValerieMacrophages (MΦs) are prevalent innate immune cells, present throughout human bodily tissues where they orchestrate innate and adaptive immune responses to maintain cellular homeostasis. MΦs have the capacity to display a wide array of functional phenotypes due to different microenvironmental cues, particularly soluble bacterial secretory products. Recent evidence has emerged demonstrating that metabolism supports MΦ function and plasticity, in addition to energy and biomolecular precursor production. In this study, 1D 1H-NMR-based metabolomics was used to identify the metabolic pathways that are differentially altered following primary human monocyte-derived MΦ exposure to P. aeruginosa planktonic- and biofilm-conditioned media (PCM and BCM). Metabolic profiling of PCM- and BCM-exposed MΦs indicated a significant increase in glycolytic metabolism, purine biosynthesis, and inositol phosphate metabolism. In addition, these metabolic patterns suggested that BCM-exposed MΦs exhibit a hyperinflammatory metabolic profile with reduced glycerol metabolism and elevated catabolism of lactate and amino acids, relative to PCM-exposed MΦs. Altogether, our study reveals novel findings concerning the metabolic modulation of human MΦs after exposure to secretory microbial products and contributes additional knowledge to the field of immunometabolism in MΦs.Item Pathways of Iron and Sulfur Acquisition, Cofactor Assembly, Destination, and Storage in Diverse Archaeal Methanogens and Alkanotrophs(2021-08) Johnson, Christina; England, Alexis; Munro-Ehrlich, Mason; Colman, Daniel R.; DuBois, Jennifer L.; Boyd, Eric S.Archaeal methanogens, methanotrophs, and alkanotrophs have a high demand for iron (Fe) and sulfur (S); however, little is known of how they acquire, traffic, deploy, and store these elements. Here, we examined the distribution of homologs of proteins mediating key steps in Fe/S metabolism in model microorganisms, including iron(II) sensing/uptake (FeoAB), sulfide extraction from cysteine (SufS), and the biosynthesis of iron-sulfur [Fe-S] clusters (SufBCDE), siroheme (Pch2 dehydrogenase), protoheme (AhbABCD), cytochrome c (Cyt c) (CcmCF), and iron storage/detoxification (Bfr, FtrA, and IssA), among 326 publicly available, complete or metagenome-assembled genomes of archaeal methanogens/methanotrophs/alkanotrophs. The results indicate several prevalent but nonuniversal features, including FeoB, SufBC, and the biosynthetic apparatus for the basic tetrapyrrole scaffold, as well as its siroheme (and F430) derivatives. However, several early-diverging genomes lacked SufS and pathways to synthesize and deploy heme. Genomes encoding complete versus incomplete heme biosynthetic pathways exhibited equivalent prevalences of [Fe-S] cluster binding proteins, suggesting an expansion of catalytic capabilities rather than substitution of heme for [Fe-S] in the former group. Several strains with heme binding proteins lacked heme biosynthesis capabilities, while other strains with siroheme biosynthesis capability lacked homologs of known siroheme binding proteins, indicating heme auxotrophy and unknown siroheme biochemistry, respectively. While ferritin proteins involved in ferric oxide storage were widespread, those involved in storing Fe as thioferrate were unevenly distributed. Collectively, the results suggest that differences in the mechanisms of Fe and S acquisition, deployment, and storage have accompanied the diversification of methanogens/methanotrophs/alkanotrophs, possibly in response to differential availability of these elements as these organisms evolved.