Scholarly Work - Library
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/320
Browse
Item Cited/Downloaded Dataset and Repository Characteristics [dataset](Montana State University ScholarWorks, 2016-02) Mannheimer, Sara; Borda, Susan; Sterman, Leila B.This rubric documents the characteristics of high-use datasets and their repositories, with “high-use” defined as either highly cited in Thomson Reuters' Data Citation Index or highly downloaded in an institutional repository. The authors reviewed publicly-available information on repository websites and inputted our observations into the rubric. The rubric addresses six major characteristics of high-use datasets and their repositories: basic information; funding agency and journal information; linking and sharing; factors to encourage reuse; repository characteristics; and data description.Item Data set supporting study on Undercounting File Downloads from Institutional Repositories [dataset](Montana State University ScholarWorks, 2016-07) OBrien, Patrick; Arlitsch, Kenning; Sterman, Leila B.; Mixter, Jeff; Wheeler, Jonathan; Borda, SusanThis dataset supports the study published as “Undercounting File Downloads from IR”. The following items are included: 1. gaEvent.zip = PDF exports of Google Analytics Events reports for each IR. 2. gaItemSummaryPageViews.zip = PDF exports of Google Analytics Item Summary Page Views reports. Also, included is a Text file containing the Regular Expressions used to generate each report’s Advanced Filter. 3. gaSourceSessions.zip = PDF exports of Google Analytics Referral reports to determine the percentage of referral traffic from Google Scholar. Note: does not include Utah due to issues with the structure of Utah’s IR and configuration of their Google Analytics. 4. irDataUnderCount.tsv.zip – TSV file of complete Google Search Console data set containing the 57,087 unique URLs in 413,786 records. 5. irDataUnderCountCiteContentDownloards.tsv.zip = TSV of the Google Search Console records containing the Citable Content Download records that were not counted in google Analytics.Item Discovery and Reuse of Open Datasets: An Exploratory Study(Journal of eScience Librarianship, 2016-07) Mannheimer, Sara; Sterman, Leila B.; Borda, SusanObjective: This article analyzes twenty cited or downloaded datasets and the repositories that house them, in order to produce insights that can be used by academic libraries to encourage discovery and reuse of research data in institutional repositories. Methods: Using Thomson Reuters’ Data Citation Index and repository download statistics, we identified twenty cited/downloaded datasets. We documented the characteristics of the cited/downloaded datasets and their corresponding repositories in a self-designed rubric. The rubric includes six major categories: basic information; funding agency and journal information; linking and sharing; factors to encourage reuse; repository characteristics; and data description. Results: Our small-scale study suggests that cited/downloaded datasets generally comply with basic recommendations for facilitating reuse: data are documented well; formatted for use with a variety of software; and shared in established, open access repositories. Three significant factors also appear to contribute to dataset discovery: publishing in discipline-specific repositories; indexing in more than one location on the web; and using persistent identifiers. The cited/downloaded datasets in our analysis came from a few specific disciplines, and tended to be funded by agencies with data publication mandates. Conclusions: The results of this exploratory research provide insights that can inform academic librarians as they work to encourage discovery and reuse of institutional datasets. Our analysis also suggests areas in which academic librarians can target open data advocacy in their communities in order to begin to build open data success stories that will fuel future advocacy efforts.Item Undercounting File Downloads from Institutional Repositories(Emerald, 2016-10) OBrien, Patrick; Arlitsch, Kenning; Sterman, Leila B.; Mixter, Jeff; Wheeler, Jonathan; Borda, SusanA primary impact metric for institutional repositories (IR) is the number of file downloads, which are commonly measured through third-party web analytics software. Google Analytics, a free service used by most academic libraries, relies on HTML page tagging to log visitor activity on Google’s servers. However, web aggregators such as Google Scholar link directly to high value content (usually PDF files), bypassing the HTML page and failing to register these direct access events. This paper presents evidence of a study of four institutions demonstrating that the majority of IR activity is not counted by page tagging web analytics software, and proposes a practical solution for significantly improving the reporting relevancy and accuracy of IR performance metrics using Google Analytics.