Scholarly Work - Earth Sciences
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8747
Browse
3 results
Search Results
Item New Paleomagnetic Constraints on the Early Cretaceous Paleolatitude of the Lhasa Terrane (Tibet)(Frontiers Media SA, 2022-05) Li, Zhenyu; Ding, Lin; Laskowski, Andrew K.; Burke, William B.; Chen, Yaofei; Song, Peiping; Yue, Yahui; Xie, JingNew zircon U-Pb dating results from the Zonggei Formation volcanics indicate that the volcanic rocks formed at ∼114–110 Ma. Paleomagnetic data, petrography, and rock magnetism confirm the primary nature of isolated characteristic remanent magnetizations carried by titanomagnetite and hematite. A statistical analysis of the combined results from the Zonggei and Duoni formations reveals a group-mean direction of D±ΔD = 0.4° ± 6.0°, I±ΔI = 22.2° ± 5.6°, α95 = 5.6°, k = 35.2 after bedding correction based on 20 group-mean directions. The corresponding paleopole was calculated to be λp = 70.3°N, φp = 270.5°E with A95 = 5.2°. The interpretation of our data alongside the Cenozoic data from the Tethyan Himalaya indicates that the India–Asia collision initiated by 61.7 ± 3.0 Ma at 13.0° ± 1.8°N, assuming a single-collision model. Intracontinental crustal shortening totaling 1,770 ± 470 km took place on the Asian side since the onset of India–Asia collision. Furthermore, the data show that the Neo-Tethys Ocean reached its maximum N-S width of 7,100 ± 530 km at ∼132 Ma and shrank to 6,400 ± 550 km by ∼115 ± 5 Ma. This is consistent with previous estimates based on the geophysical images of the subducted Neo-Tethyan slab beneath Eurasia.Item Provenance analysis of Cretaceous peripheral foreland basin in central Tibet: Implications to precise timing on the initial Lhasa-Qiangtang collision(Elsevier BV, 2020-01) Chen, Yaofei; Ding, Lin; Li, Zhenyu; Laskowski, Andrew K.; Li, Jinxiang; Baral, Upendra; Qasim, Muhammad; Yue, YahuiMesozoic strata along northern margin of the Lhasa terrane near Dingqing, Tibet provide a semi-continuous record of the Bangong-Nujiang Ocean closure and the subsequent Lhasa-Qiangtang collision. In this study, we present results of sandstone petrographic, detrital zircon Usingle bondPb, and Cr-spinel geochemical data to determine the provenance of the Mesozoic strata (from the Triassic Quehala Group and the Mid-Jurassic to Lower Cretaceous Xihu, Lagongtang, and Duoni Formations, which are young from ~220 Ma to ~100 Ma) in this region, thereby allowing for interpretation of their tectonic setting. The similar 1200–900 age cluster from the lower Xihu Formation to that of the Triassic Quehala Group and the distinct age peaks at ~200 Ma and ~146 Ma from the upper Xihu Formation suggest a Lhasa terrane provenance to the south. Distinctive age clusters of 300–210 Ma and ~1800 Ma and Cr-spinel composition analysis of the Lagongtang Formation indicate a provenance shift from the Lhasa terrane to the Qiangtang terrane and the Bangong-Nujiang suture zone to the north. The Lagongtang Formation was deposited in a bathyal-abyssal to shallow-slope environment from north to south, that we interpret as the foredeep depozone and distal foredeep of a peripheral foreland basin system that developed due to flexural subsidence related to the Lhasa-Qiangtang collision and terrane accretion. The age of the Lhasa-Qiangtang collision is constrained by a ~140 Ma tuffite Usingle bondPb age at the base of the foreland basin strata. An angular unconformity between the Xihu and Lagongtang Formation, which we interpret as the result of the Lhasa-Qiangtang collision. Our results indicate that the Lhasa-Qiangtang collision initiated around ~140 Ma in the Dingqing region, simultaneously with previous determinations 1200 km to the west near Gaize area. Therefore, we prefer quasi-simultaneous onset of collision along-strike to zippering collision models wherein the east collision age is older than the west.Item Field Report: Research along the Yarlung Suture Zone in Southern Tibet, a persistent geological frontier(2018-03) Laskowski, Andrew K.; Ding, Lin; Cai, Fulong; Chen, Yaofei; He, SonglinThe Yarlung Suture Zone in Southern Tibet marks the boundary between India and Asia–formerly separated by an ocean basin–and is a critical record of the tectonic processes that created the Tibetan Plateau. The Yarlung Suture Zone is also a frontier research area, as difficulty of access has limited research activity, providing ample opportunities for new discoveries. This paper documents field research conducted by the authors along the Yarlung suture zone in eastern Xigaze (Shigatse, Rikaze) County, ∼250 km west of the city of Lhasa, in July 2017. The goal of this research was to map the Suture Zone structure in detail, and more specifically to understand the branching relationships between two major fault systems—the Great Counter Thrust and Gangdese Thrust. A summary of early geological exploration is included to provide context for this research.