Scholarly Work - Earth Sciences

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8747

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Increased whitebark pine (Pinus albicaulis) growth and defense under a warmer and regionally drier climate
    (Frontiers Media SA, 2023-03) Kichas, Nickolas E.; Pederson, Gregory T.; Hood, Sharon M.; Everett, Richard G.; McWethy, David B.
    Introduction: Tree defense characteristics play a crucial role in modulating conifer bark beetle interactions, and there is a growing body of literature investigating factors mediating tree growth and resin-based defenses in conifers. A subset of studies have looked at relationships between tree growth, resin duct morphology and climate; however, these studies are almost exclusively from lower-elevation, moisture limited systems. The relationship between resin ducts and climate in higher-elevation, energy-limited ecosystems is currently poorly understood. Methods: In this study, we: (1) evaluated the relationship between biological trends in tree growth, resin duct anatomy, and climatic variability and (2) determined if tree growth and resin duct morphology of whitebark pine, a high-elevation conifer of management concern, is constrained by climate and/or regional drought conditions. Results: We found that high-elevation whitebark pine trees growing in an energy-limited system experienced increased growth and defense under warmer and regionally drier conditions, with climate variables explaining a substantive proportion of variation (∼20–31%) in tree diameter growth and resin duct anatomy. Discussion: Our results suggest that whitebark pine growth and defense was historically limited by short growing seasons in high-elevation environments; however, this relationship may change in the future with prolonged warming conditions.
  • Thumbnail Image
    Item
    A 2000-year record of fecal biomarkers reveals past herbivore presence and impacts in a catchment in northern Yellowstone National Park, USA
    (Public Library of Science, 2024-10) Wendt, John A .F.; Argiriadis, Elena; Whitlock, Cathy; Bortolini, Mara; Battistel, Dario; McWethy, David B.
    Molecular biomarkers preserved in lake sediments are increasingly used to develop records of past organism occurrence. When linked with traditional paleoecological methods, analysis of molecular biomarkers can yield new insights into the roles of herbivores and other animals in long-term ecosystem dynamics. We sought to determine whether fecal steroids in lake sediments could be used to reconstruct past ungulate use and dominant taxa in a small catchment in northern Yellowstone National Park. To do so, we characterized the fecal steroid profiles of a selection of North American ungulates historically present in the Yellowstone region (bison, elk, moose, mule deer, and pronghorn) and compared them with those of sediments from a small lake in the Yellowstone Northern Range. Analysis of a set of fecal steroids from herbivore dung (Δ5-sterols, 5α-stanols, 5β-stanols, epi5β-stanols, stanones, and bile acids) differentiated moose, pronghorn, and mule deer, whereas bison and elk were partially differentiated. Our results show that bison and/or elk were the primary ungulates in the watershed over the past c. 2300 years. Fecal steroid influxes reached historically unprecedented levels during the early and middle 20th century, possibly indicating high local use by ungulates. Comparison of fecal steroid influxes with pollen and diatom data suggests that elevated ungulate presence may have contributed to decreased forage taxa (Poaceae, Artemisia, and Salix), relative to long-term averages, and possibly increased lake production. Our results reflect past change within a single watershed, and extending this approach to a network of sites could provide much-needed information on past herbivore communities, use, and environmental influences in Yellowstone National Park and elsewhere.
  • Thumbnail Image
    Item
    Spatiotemporal analysis of wildfires and their relationship with climate and land use in the Gran Chaco and Pantanal ecoregions
    (Elsevier BV, 2024-12) Vidal-Riveros, Cristina; Currey, Bryce; McWethy, David B.; Ngo Bieng, Marie Ange; Souza-Alonso, Pablo
    The Gran Chaco and Pantanal ecoregions are the largest remaining dry forest areas in South America. Supporting diverse savanna, woodland and wetland ecosystems, these ecoregions are experiencing rapid changes in land use and fire occurrence with implications for ecosystem integrity. Our study characterizes the spatiotemporal patterns of wildfires in the Gran Chaco and Pantanal, and then examines the relationship between patterns of fire occurrence and climatic and anthropogenic drivers. We evaluated fire data of the last two decades (2001-2020) using the MODIS Collection 6.1 and the Global Fire Atlas products. Results of the fire pattern characterization were then used to model the probability of fire occurrence across each ecoregion (Random Forest, Generalized Linear Model, and Generalized Additive Model). Our results indicated that most of the total burned area belonged to the Humid Chaco, while the largest individual burned areas were mainly observed in the Pantanal. Fires primarily occurred during the dry season, with the majority of burned areas recorded during this period. Findings from the three modelling approaches consistently illustrated the spatial distribution of fire occurrence, depicting a declining probability of fire occurrence from East to West. All models underscored the importance of three variables to predict fire occurrence: temperature, livestock abundance and forest cover. Fire occurrence increased with increasing maximum temperatures and livestock presence and decreased with tree cover. This research helps to clarify the potential consequences of changes in land use, rainfall regime and temperature, and uncontrolled burning practices on the current fire activity in the Gran Chaco and Pantanal ecoregions. Understanding the spatiotemporal patterns of fire occurrence and their relationship with climatic, environmental and anthropogenic drivers can help to design more effective management strategies to mitigate fire impacts and to preserve the ecological integrity of these highly diverse regions
Copyright (c) 2002-2022, LYRASIS. All rights reserved.