Scholarly Work - Earth Sciences

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8747

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Preventing heat-related deaths: The urgent need for a global early warning system for heat
    (Public Library of Science, 2024-07) Brimicombe, Chloe; Runkle, Jennifer D.; Tuholske, Cascade; Domeisen, Daniela I. V.; Gao, Chuansi; Toftum, Jørn; Otto, Ilona M.
    Heatwaves are the deadliest weather hazard and people and societies across the world continue to suffer from heat-related impacts. Future climate projections show a troubling increase in cross-sectoral impacts including health and economic risk presented by heatwaves. Many weather hazards such as floods and droughts already have a type of Early Warning System (EWS) or Global Alert System, but a global heat early warning system currently does not exist. An accurate heat EWS can save lives and can promote heat adaptation across society. Here, we (1) explore the history of Early Warning Systems as framed using the Disaster Risk Reduction paradigms and (2) identify potential barriers to an integrated Global Heat Early Warning system. Finally, we discuss what we have learned from history and the identified current barriers and outline a vision of a Global Heat Early Warning system around four key themes, incorporating systems for low-, middle-, and high-income countries and requiring cross-sectoral, cross-government, and interdisciplinary collaboration.
  • Thumbnail Image
    Item
    A framework to link climate change, food security, and migration: unpacking the agricultural pathway
    (Springer Science and Business Media LLC, 2024-03) Tuholske, Cascade; Di Landro, Maria Agustina; Anderson, Weston; van Duijne, Robbin Jan; de Sherbinin, Alex
    Researchers have long hypothesized linkages between climate change, food security, and migration in low- and middle-income countries (LMICs). One such hypothesis is the “agricultural pathway,” which postulates that negative climate change impacts on food production harm livelihoods, which triggers rural out-migration, internally or abroad. Migration is thus an adaptation to cope with the impacts of climate change and bolster livelihoods. Recent evidence suggests that the agriculture pathway is a plausible mechanism to explain climate-related migration. But direct causal connections from climate impacts on food production to livelihood loss to rural out-migration have yet to be fully established. To guide future research on the climate-food-migration nexus, we present a conceptual framework that outlines the components and linkages underpinning the agricultural pathway in LMICs. We build on established environmental-migration conceptual frameworks that have informed empirical research and deepened our understanding of complex human-environmental systems. First, we provide an overview of the conceptual framework and its connection to the agricultural pathway hypothesis in the climate mobility literature. We then outline the primary components and linkages of the conceptual framework as they pertain to LMIC contexts, highlighting current research gaps and challenges relating to the agricultural pathway. Last, we discuss possible future research directions for the climate-food-migration nexus. By highlighting the complex, multiscale, interconnected linkages that underpin the agricultural pathway, our framework unpacks the multiple causal connections that currently lie hidden in the agricultural pathway hypothesis.
  • Thumbnail Image
    Item
    Hazardous heat exposure among incarcerated people in the United States
    (Springer Science and Business Media LLC, 2024-03) Tuholske, Cascade; Lynch, Victoria D.; Spriggs, Raenita; Ahn, Yoonjung; Raymond, Colin; Nigra, Anne E.; Parks, Robbie M.
    Climate change is predicted to increase the frequency of potentially hazardous heat conditions across the United States, putting the incarcerated population of 2 million at risk for heat-related health conditions. We evaluate the exposure to potentially hazardous heat for 4,078 continental US carceral facilities during 1982–2020. Results show that the number of hot days per year increased during 1982–2020 for 1,739 carceral facilities, primarily located in the southern United States. State-run carceral facilities in Texas and Florida accounted for 52% of total exposure, despite holding 12% of all incarcerated people. This highlights the urgency for enhanced infrastructure, health system interventions and treatment of incarcerated people, especially under climate change.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.